On Fuzzy Strongly Irresolute Mappings

A.K.Chaudhuri and P. Das

Department of Mathematics Visva-Bharati University Santiniketan, West Bengal INDIA

Abstract: The concept of fuzzy strongly irresolute(f.s.i.)

mappings has been defined using the notions of fuzzy semi-open

and semi-closed sets and some properties of such mappings are
obtained.

Let (X,T) and (Y,T') be two fuzzy topological spaces. f will denote a mapping of (X,T) into (Y,T'). The family of all fuzzy semi-open (resp.semi-closed) sets of (X,T) will be denoted by SO(T) (resp.SC(T)).

The fuzzy semi-closure(resp.semi-interior) of A \in I $^{\times}$ denoted by \overline{A}_{S} (resp. A_{S}°) is defined by

 $\overline{A}_S = \bigwedge \{A_i \in SC(T), A_i \geqslant A\}$ (resp. $A_S^\circ = \bigvee \{A_i \in SO(T), A_i \leqslant A\}$.

Definition 1: f is said to be f.s.i. if $\forall A \in I^X$ $f(\overline{A}_S)$ $\subseteq f(A)$.

Remark 2 : f is f.s.i. iff $f(A_s^d) \leq f(A) \; \forall \; A \in I^X$, where A_s^d denotes the set of all semi-accumulation points of A.

Theorem 3 : f is f.s.i. iff $f^{-1}(B) \in SC(T) \forall B \in I^{y}$.

Corollary 4 : f is f.s.i. iff $f^{-1}(B) \in SO(T) \forall B \in I^{y}$.

Remark 5: Every f.s.i. mapping is fuzzy irresolute (f.i.)

----but the converse is not true.

Theorem 6: If f be f.i. and g: (Y,T')--->(Z,T'') be f.s.i., then g.f: (X,T)--->(Z,T'') is f.s.i.

Theorem 7: Let $f_i:(X_i,T_i)--->(Y_i,S_i)$ be f.s.i. for i = 1,2 and let $X=X_1\times X_2$, $Y=Y_1\times Y_2$ where X_1 is product related to X_2 . Then $f:(X,T_1\times T_2)--->(Y,S_1\times S_2)$ defined by

Carlo San

 $f(x_1,x_2) = (f_1(x_1),f_2(x_2)) \forall x_1 \in X_1, x_2 \in X_2 \text{ is f.s.i.}$

Theorem 8: Let f be f.s.i. and let g:(Y,T')--->(Z,T'') be any mapping. Then g.f:(X,T)--->(Z,T'') is f.s.i.

Theorem 9: Let $f: X---> TIX_i$ be f.s.i. and let \forall if J $f_i: X--->X_i$ be defined by $f_i(x) = i$ th cordinate of $f(x) \forall x \in X$ Then f_i is f.s.i.

Definition 10: Dé I is said to be S_2C -connected if D cannot be expressed as D = BVC where $\overline{B}_5 \wedge C = B \wedge \overline{C}_5 = 0$.

Theorem 11: Let f be f.s.i. and injective and let $A \in I^X$ be S_2C -connected. Then $(f(A))_s$ consists of only one point.

Theorem 12: A semi-closed crisp subset of a fuzzy semicompact space (X,T) is fuzzy semi-compact.

Definition 13: f is said to be fuzzy semi-compact if
the inverse image of every fuzzy semi-compact crisp subset in
Y is fuzzy semi-compact in X.

Theorem 14: Let f be f.s.i. where (X,T) is a fuzzy semicompact space. Then f is fuzzy semi-compact.

Theorem 15: Let f be f.s.i. If $A \in I^X$ be fuzzy semicompact, then $(f(A))_o$ is finite.

Theorem 16: Let f be f.s.i. and surjective. If X is ______
fuzzy nearly semi-compact or fuzzy almost semi-compact, then
Y is fuzzy semi-compact.

Definition 17: f is said to be a fuzzy completely irresolute mapping if the inverse image of every fuzzy semi-open set in Y is fuzzy regularly semi-open in X.

Theorem 18: Let f be surjective and completely irresolute mapping. If (X,T) be fuzzy nearly semi-compact, then (Y,T') is fuzzy semi-compact.

Theorem 19: If $f: (X,T) \longrightarrow (Y,T')$ be a fuzzy completely

irresolute mapping and g: (Y,T')--->(Z,T'') be fuzzy irresolute mapping, then g.f: (X,T)--->(Z,T'') is fuzzy completely irresolute.

Remark 20: Every f.s.i. mapping is fuzzy completely irresolute but the converse is not true.

References

- 1. K.K.Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzy weakly continuity, J. Math. Anal. Appl. 82(1981) 14-32.
- 2. C.L.Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24(1968) 182-190.
- 3. N.Levine, Strong continuity in topological spaces, Amer. Math. Monthly 67 (1960) 269.