On Fuzzy Semi-Connectedness

A.K.Chaudhuri and P. Das

Department of Mathematics Visva-Bharati University Santiniketan, West Bengal India.

Abstract: The concept of fuzzy semi-open and semi-closed sets have been utilised to define four types of semi-seperation of fuzzy sets corrosponding to the notions of weak seperation[41, seperation[5], Q-seperation[3], Strong-seperation[5] and eight types of semi-connectedness viz.SiC, SC;-connectedness for i=1,2,3,4 corrosponding to the concept of Q-connectedness[5], connectedness[3], connectedness[4], $Q_{\mathbf{v}}$ - connectedness[5] and Ci-connectedness[1] of a fuzzy set. Interrelationship between these notions of semi-connectedness of a fuzzy set and their properties have been discussed.

Si-seperated fuzzy sets (i=1,2,3,4)

Let (X,T) be a fuzzy topological space.

Definition 1: Two non-zero fuzzy sets A and B in (X,T) are said to be S_1 (resp. S_2)-seperated if there exist two fuzzy semi-open(resp.semi-closed) sets G_1 H such that G_2 A,H $_2$ B, G_3 B=0,H $_3$ A=0.

If A,B be S,-seperated and if in addition G(x)+H(x) >1 \forall x in A, and H(x)+B(x) >1 \forall x in B, , then A,B are said to be S, seperated.

Remark 2: A,B \in I are S₂-seperated iff A \wedge B_S = B \wedge A_S=0 where A_S denote the fuzzy semi-closure of A.

Definition 3: Two non-zero fuzzy sets. A and B are said to be S_3 -seperated if A \overline{q} \overline{B}_s ,and B \overline{q} \overline{A}_s .

Remark 4: A,B \in I are said S₃-seperated iff there exist fuzzy semi-open sets G,H such that A \leqslant G, B \leqslant H, A \overline{q} H, B \overline{q} G

Remark 5: Seperation[5], Q-seperation[3], Weak seperation [4] and strong-seperation[5] of fuzzy sets imply respectively their S_1 , S_2 , S_3 , S_4 -seperations. But examples are given to show that the converse is not true.

Remark 6: Let $A,B \in I^{\times}$ be S_i —seperated for i=1,2,3,4. If i=2 and if $A \vee B$ be fuzzy semi-closed, then A,B are fuzzy semi-closed. If $A \vee B$ be fuzzy semi-open (resp.semi-closed when $i \neq 2$), then A,B are not necessarily fuzzy semi-open (resp. semi-closed).

Theorem 7: Let $A, B \in I^X$ be such that $A_o \wedge B_o = 0$, $(\overline{A}_S)_{A_o \wedge B_o} = (\overline{A}_S)_{A_o \wedge B_o} = (\overline{B}_S)_{A_o \wedge B_o} = (\overline{B}_S)$

Remark 8: Example is given to show that the conditions of the above theorem are not necessary.

Theorem 9: A,B \in I^X are S₂-seperated if $(\overline{A}_S)_{A_0VB_0}$ and $(\overline{B}_S)_{A_0VB_0}$ are S₂-seperated.

Remark 10: Example is given to show that the converse of _____
the above theorem is not true.

Semi-connected fuzzy sets

Definition 11: D ϵ I is said to be S; C-connected if D can not be expressed as the join of two non-zero S; -seperated fuzzy sets A and B for i=1,2,3,4.

Definition 12: D \in I $^{\mathsf{X}}$ is said to be SC; -connected

(i=1,2,3,4) if there do not exist fuzzy semi-open sets A,B such that respectively

 $SC_1 : D \leqslant A \lor B$, $A \land B \leqslant 1-D$, $D \land A \neq 0$, $D \land B \neq 0$

 SC_2 : D $\langle A \vee B$, DAAAB =0, DAA $\neq 0$, DAB $\neq 0$

SC3: D <A ∨ B, A ∧ B <1-D, A <1-D, B <1-D.

 $SC_4: D \leqslant A \lor B, D \land A \land B = 0, A \nleq 1-D, B \nleq 1-D.$

Remark 13 : S, C-connected===>0-connected[5], S₂ C-connected===>connected[3], S₃C-connected===>connected[4], S₄ C-connected===> O_{ψ} -connected[5], SC; -connected===>C; -connected[1] for i=1,2,3,4. But the reverse implications are not true.

Remark 14: Examples are constructed to show that that $SC_2 = \neq = > SC_1$, $SC_3 = \neq = > SC_1$, $SC_4 = \neq = > SC_2$, $SC_4 = \neq = > SC_2$, $SC_3 = \neq = > SC_2$, $SC_4 = \neq = > SC_4$, $SC_4 = \neq > SC_4$, $SC_4 = \neq = > SC_4$

Remark 15 Interrelationship between these notion of ______semi-connectedness of a fuzzy set in a fuzzy topological space is described by the following diagram.

Examples have been given to show that the reverse implications do not hold.

Theorem 16: Let $D \in I^X$ be such that for any two fuzzy points x_λ , $y_\mu \in D$, there exists a $S_iC(SC_j)$ -connected fuzzy subset A such that x_λ , $y_\mu \in A \leqslant D$. Then D is $S_iC(SC_j)$ -connected

for i = 1,2,3 and j = 1,2,3,4. The result is not true for i = 4.

Remark 18: (i) The join of two overlapping S_4C -connected fuzzy sets is not necessarily S_4C -connected.

(ii) The conditions "intersecting" or "overlapping" in the above theorem are necessary.

References:

- 1.Naseem Azmal and J.K.Kohli, Connectedness in fuzzy topological spaces, Fuzzy Sets and Systems 31(1989) 369-388.
- 2.C.L.Chang, Fuzzy topological spaces, J.Math.Anal. Appl.24(1968) 182-193.
- 3.P.P.Ming and L.Y.Ming, Fuzzy Topology I. Neighbourhood structure of fuzzy point and Moore Smith convergence, J.Math. Anal.Appl.76 (1980) 571-599.
- 4.S.Saha, Local connectedness in fuzzy setting, Simon Stevin, a quaterly journal of pure applied mathematics 61(1987) 3-13.
- 5. Zheng Chong You, On connectedness of fuzzy topological spaces, Fuzzy Mathematics 3(1982) 59-66.