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1. Introduction and Preliminaries

Since the concept of fuzzy subgroups was introduced by Rosenteldma it

has been studying by several authors in [2-11]. Recently, Biswas has pro-

[8]. In this paper, we will gen-

posed the concept of anti fuzzy subgroups
eralize this concept to that of anti fuzzy subgroups under t-norms, and

investigate some of their properties. We will also study the problems of
the anti products and isomorphisms of anti fuzzy subgroups under t-norms.

Throughout this paper, let G be a group, I = [0, 1]. We will denote a
t-norm by T and refer for its properties to (3,4,6,9,12].

Definition 1.1. lLet '1.‘1 and T2 be t-norms and £f: I1—1 an order-preserving

bijection. We say that T2 is the conjugate of '.l‘1, written as T1, it -
T,(ayb) = T,(a,b) = 1 = T, (1-a,1-b) v a,bel

and that '1'2 dominates T1, written as 'r2>> T1 or T1<<T2, ir
T,(T,(a,b),T, (c,d)) > T1(T2(a,c),‘r2(b,d)) v a,b,c,d €I

and that T, is generated by '1‘1 via £, if

2 :
T,(a,b) = 27 (2, (£(a),2(b))) v a,bel

Definition 1.2. Let X be an ordinary set. By a fuzzy subsets u of X, we
mean a function u: X— I with u(x) as the grade of membership for v x ¢ X.

Definition 1.3.[3J A fuzzy subgroug of @ under a t-norm T (called T-fuzzy
subgroup of G, for short) is a fuzsy subset u of @ satisfying

(1) u(xy) =2 T(u(x),u(y)) v x,y€@

1

(2) u(x~!) = u(x) where x~! is the inverse of X, v XEG



(3) u(e) = 1 where e is the identity of G.

Definition 1.4, 8JL fuzzy subset u of G is called an anti fuzzy subgroup
of @, 1f u(xy) £ max(u(x),u(y)) and u(zx™!) < u(x) for v x,y €G.

2. Anti Fazsy Subgroups Under t-NHorms

Definition 2.1. A fuzzy subset u of G is called an anti fuzzy subgroups
of G under a t-norm T (called anti T-fuzsy subgroup of @, for short), if
(1) u(xy) < F(u(x),u(y)) where T is the conjugate of T, v x,y€G

1

(2) ul(x~') = u(x) vhere x~' 1is the inverse of x, v x €G

(3) u(e) = O where e is the identity of G.

Based on the definitions above, we have the following properties of

anti T-fuzzy subgroups omitting the proofs:

Proposition 2.1, A fuzzy sSubset u of G is an anti T-fuzzy subgroup of G
1£? its complement u®, defined by u®(x) = 1 - u(x) v x€G, is a T-fuzzy
subgroup of G.

Proposition 2.2. A fuzzy subset u of G is an anti T-fuzzy subgroup of G
itf u(e) = 0 and u(xy™") < Mul(x),uly)) v x,y€G.

Proposition 2.3. Let T be a t-norm satisfying T(a,b) < 1 for v a,be& [0, 1),
If u is an anti T-fuzzy subgroup of G, then L(u) = {x€G: u(x)<1y 1is a
subgroup of G.

Definition 2.2. Let X and Y be ordinary sets and h: X—>Y be a mapping.
If u is a fuzzy subset of X, then the fuzzy subset h(u) of Y defined by

inf u(x) it y €h(X)
(n(u)l(y) = {xeh (x)
o otherwise

is called the image of u under h.
If u is a fuzzy subset of Y, then the fuzzy subset b~ (0) of X defined by

(™' (w))(x) = u(a(x)) vxex

is called the preimage of u under h.



Proposition 2.4. Let h be a homomorphism of group @ into group @°'.

(1) If u is an anti PT-fuzzy subgroup of G'; then 0! (u), the preimage
of u under h, is an anti T-fuzzy subgrdéup of G@. "» '

(2) Iz T is a continuous t-norm and u is an anti T-fuzzy subgroup of G;
then h(u), the image of u under h, is an anti T-fuzzy subgroup of @'.

3. Anti Products tmler t-Norms of Anti T-Fuzzy Subgroups
Definition 3.1. Let u and v be fuzzy subsets of G. The anti 1\>roduct of
u and v under a t-norm T (called anti T-product of u and v, for short),
vritten as [u.vls 1s a fuzzy subset of @ defined by

(u.vlp(z) = T(u(x),vix)) v x€6

Based on the properties of anti T-fuzzy subgroups, we have the following
properties of anti T-products and omit the proofs:

Proposition 3.1. Let T, and T, be t-norms end T,> T, If u and v are

anti T, -fuzzy subgroups of @; then [n.v]r , the anti T
2
vy, is also an anti T1 -fuzzy subgroup of G.

2-product of u and

Proposition 3.2. Let T, and T2 be t-norms and »'1‘277' T, u and v be anti
T,-fuzzy subgoups of G. If h is a homomorphism of G into a group G', then
(1) The preimage of [u.v)TZ under h, h-1([u.v]T2), is also an anti

T1-fuzzy subgroup of G.
(2) 07 (laovly ) = W™ (@)™ ()] -

Proposition 3.3, Let T, be a continucus t-norm and the t-norm ‘1'2 dominates
T1, u and v be anti";'1 -fuzzy subgroups of G'. If h is a homomorphism of
G into G', then

(1) The image of [u.v], under h, h([u.v]y ), is also an anti T,-fuzzy
2

2
subgroup of G'.

(2) h((u.v]Tz) =2 [h(u) ,h(v)]Tz.



4. Isomorphisms of Anti T-Fagzy Subgroups

-

let u, be an anti T, -fuzzy subgroup of G:L' M, denote the subgroup of

1 Ty ,
G, generated by the subset L(u,) = {x €a,: ni(x)<1}. U, = {ui(x): x¢€

L(a,)} ST and ¥, (0,) ={T,(a)b): a,b€T,} c I 1=1,2.

Definition 4.1. If there exists.an isomorphism (P of M, onto M, and an
order-preserving injection g: T1 (U“)—>I such that |

(2) guy(x)) = u,(P(x)) v x€Llu,)
(3) g(-T_1(a,b)) =-172(g(a),g(b)) v a,b €U,

Then the anti T1 -fuzzy subgroup u, of G1 and the anti rz-fuzzy subgroup
u, of G, are said to be isomorphic, and the pair (P,g) is called an

isomorphism of u, onto u,.

Based on the properties of anti T-fuzzy subgroups, we have the following

tvo basic isomorphism theorems for anti T-fuzzy subgroups:

Theorem 4.1. Let u, be anti T, -fuzzy subgroup of G, (i=1,2), @ an isomo-

rphism of M, onto M,. Ir T, is generated by T

1 1 2
is an isomorphism of u, onto u, iff Flu, (x)) = u,(P(x)) v x€M, Wnere

via £, then (99,1'\;51 (U1))

£(t) =1 - 2(1-t) v t€I, f\'r] (U,) is the restriction of f to T,(U,)<I.

Theorem 4.2. Let t-norm T1 be generated by a t-norm T2 via f, u, an anti
T1-fuzzy subgroup of G1. % 4 M1 is isomorphic to a certain subgroup 82 of
Gz' then u, is isomorphic to an anti Tz-fnzzy subgroup of 62.

We omit the proofs of theorem 4.1 and theorem 4.2. In theorem 4.2, if
ve take 01 = G2 = G, 82 = M1 and  the identical automorphism of M1, ve
get the following corollary:

Corollary 4.1. If t-nomm T1 is generated by a t-norm T2, then each anti

P, -fuzzy subgroup of @ is isomorphic to an anti i‘z-mzzy subgroup of Q.

1
Presenting the examples of isomorphisms of anti T-fuzzy subgroups and



the applications of corollary 4.1, we may prove that for any given t-norm
TE (!ssU !HU !PU !IU !3)\{Min}. every anti' T-fugzy subgroup of a grouptG
is isomorphic to a !P-fuzzy subgroup of G or a Tuffuzzy subgroup of @,
vher :SS’ :ﬂ’ ’F' !Y;and T, denote the Schweizer-Sklar's, Hamacher's,
Frank's, Yager's and Sugeno's families of t-norms, respectivelyj and
TP(a,b) = a.b, TM(a,b) = max(a+b-1,0) , v a,bel.
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