ON THE ANTI FUZZY SUBGROUPS UNDER t-HORMS

Li Inshu

Department of Mathematics, Huaiyin Teacher's College Jiangsu Province, P.R. China

1. Introduction and Preliminaries

Since the concept of fuzzy subgroups was introduced by Rosenfeld [1], it has been studying by several authors in [2-11]. Recently, Biswas has proposed the concept of anti fuzzy subgroups [8]. In this paper, we will generalize this concept to that of anti fuzzy subgroups under t-norms, and investigate some of their properties. We will also study the problems of the anti products and isomorphisms of anti fuzzy subgroups under t-norms.

Throughout this paper, let G be a group, I = [0, 1]. We will denote a t-norm by T and refer for its properties to [3,4,6,9,12].

Definition 1.1. Let T_1 and T_2 be t-norms and $f\colon I \longrightarrow I$ an order-preserving bijection. We say that T_2 is the conjugate of T_1 , written as \overline{T}_1 , if

$$T_1(a,b) = T_2(a,b) = 1 - T_1(1-a,1-b) \quad \forall \ a,b \in I$$

and that T_2 dominates T_1 , written as $T_2 \gg T_1$ or $T_1 \ll T_2$, if

$$T_2(T_1(a,b),T_1(c,d)) \ge T_1(T_2(a,c),T_2(b,d))$$
 v a,b,c,d $\in I$

and that T_2 is generated by T_1 via f, if

$$T_2(a,b) = f^{-1}(T_1(f(a),f(b))) \quad \forall a,b \in I$$

Definition 1.2. Let X be an ordinary set. By a fuzzy subsets u of X, we mean a function u: $X \rightarrow I$ with u(x) as the grade of membership for $v \in X$. **Definition** 1.3. [3] A fuzzy subgroup of G under a t-norm T (called T-fuzzy subgroup of G, for short) is a fuzzy subset u of G satisfying

(1)
$$u(xy) \geqslant T(u(x),u(y)) \quad \forall x,y \in G$$

(2)
$$u(x^{-1}) = u(x)$$
 where x^{-1} is the inverse of x, $v \in G$

(3) u(e) = 1 where e is the identity of G.

Definition 1.4. [8] A fuzzy subset u of G is called an anti fuzzy subgroup of G, if $u(xy) \leq \max(u(x), u(y))$ and $u(x^{-1}) \leq u(x)$ for $\forall x, y \in G$.

2. Anti Puzzy Subgroups Under t-Horms

Definition 2.1. A fuzzy subset u of G is called an anti fuzzy subgroups of G under a t-norm T (called anti T-fuzzy subgroup of G, for short), if

- (1) $u(xy) \leq \overline{T}(u(x), u(y))$ where \overline{T} is the conjugate of T, $v(x, y) \in G$
- (2) $u(x^{-1}) = u(x)$ where x^{-1} is the inverse of x, $v \in G$
- (3) u(e) = 0 where e is the identity of G.

Based on the definitions above, we have the following properties of anti T-fuzzy subgroups omitting the proofs:

Proposition 2.1. A fuzzy subset u of G is an anti T-fuzzy subgroup of G iff its complement u^{C} , defined by $u^{C}(x) = 1 - u(x) \quad \forall \ x \in G$, is a T-fuzzy subgroup of G.

Proposition 2.2. A fuzzy subset u of G is an anti T-fuzzy subgroup of G iff u(e) = 0 and $u(xy^{-1}) \leq T(u(x), u(y)) \quad \forall x,y \in G$.

Proposition 2.3. Let T be a t-norm satisfying T(a,b) < 1 for v $a,b \in [0, 1)$. If u is an anti T-fuzzy subgroup of G, then $L(u) = \{x \in G: u(x) < 1\}$ is a subgroup of G.

Definition 2.2. Let X and Y be ordinary sets and h: $X \longrightarrow Y$ be a mapping. If u is a fuzzy subset of X, then the fuzzy subset h(u) of Y defined by

$$[h(u)](y) = \begin{cases} \inf_{x \in h^{-1}(y)} u(x) & \text{if } y \in h(X) \\ 0 & \text{otherwise} \end{cases}$$

is called the image of u under h.

If u is a fuzzy subset of Y, then the fuzzy subset h-1 (u) of X defined by

$$[h^{-1}(u)](x) = u(h(x)) \qquad \forall x \in X$$

is called the preimage of u under h.

Proposition 2.4. Let h be a homomorphism of group G into group G'.

- (1) If u is an anti T-fuzzy subgroup of G'; then h⁻¹(u), the preimage of u under h, is an anti T-fuzzy subgroup of G.
- (2) If T is a continuous t-norm and u is an anti T-fuzzy subgroup of G; then h(u), the image of u under h, is an anti T-fuzzy subgroup of G.

3. Anti Products Under t-Norms of Anti T-Fuzzy Subgroups

Definition 3.1. Let u and v be fuzzy subsets of G. The anti product of u and v under a t-norm T (called anti T-product of u and v, for short), written as $[u.v]_{\overline{m}}$, is a fuzzy subset of G defined by

$$[u \cdot v]_{\pi}(x) = T(u(x), v(x)) \quad v \quad x \in G$$

Based on the properties of anti T-fuzzy subgroups, we have the following properties of anti T-products and omit the proofs:

Proposition 3.1. Let T_1 and T_2 be t-norms and $T_2\gg T_1$. If u and v are anti T_1 -fuzzy subgroups of θ ; then $[u.v]_{T_2}$, the anti T_2 -product of u and v, is also an anti T_1 -fuzzy subgroup of G.

Proposition 3.2. Let T_1 and T_2 be t-norms and $T_2 \gg T_1$, u and v be anti T_1 -fuzzy subgrups of G. If h is a homomorphism of G into a group G', then

(1) The preimage of $[u.v]_{T_2}$ under h, $h^{-1}([u.v]_{T_2})$, is also an anti T_1 -fuzzy subgroup of G.

(2)
$$h^{-1}([u \cdot v]_{T_2}) = [h^{-1}(u) \cdot h^{-1}(v)]_{T_2}$$

Proposition 3.3. Let T_1 be a continuous t-norm and the t-norm T_2 dominates T_1 , u and v be anti T_1 -fuzzy subgroups of G. If h is a homomorphism of G into G, then

- (1i) The image of $[u.v]_{T_2}$ under h, h($[u.v]_{T_2}$), is also an anti T_1 -fuzzy subgroup of G.
 - (2) $h([u.v]_{T_2}) \supseteq [h(u),h(v)]_{T_2}$.

4. Isomorphisms of Anti T-Fuszy Subgroups

Let u_i be an anti T_i -fuzzy subgroup of G_i , M_i denote the subgroup of G_i generated by the subset $L(u_i) = \{x \in G_i : u_i(x) < 1\}$. $U_i = \{u_i(x) : x \in L(u_i)\} \subseteq I$ and $\overline{T}_i(U_i) = \{\overline{T}_i(a,b) : a,b \in U_i\} \subseteq I$. i=1,2.

Definition 4.1. If there exists an isomorphism $\mathcal G$ of M_1 onto M_2 and an order-preserving injection $g \colon \overline{T}_1(U_\eta) \longrightarrow I$ such that

- $(1) \quad \mathcal{P}(M_1) = M_2$
- (2) $g(u_1(x)) = u_2(\mathcal{P}(x)) \quad \forall x \in L(u_1)$
- (3) $g(\overline{T}_1(a,b)) = \overline{T}_2(g(a),g(b))$ va, $b \in U_1$.

Then the anti T_1 -fuzzy subgroup u_1 of G_1 and the anti T_2 -fuzzy subgroup u_2 of G_2 are said to be isomorphic, and the pair (\mathcal{G},g) is called an isomorphism of u_1 onto u_2 .

Based on the properties of anti T-fuzzy subgroups, we have the following two basic isomorphism theorems for anti T-fuzzy subgroups:

Theorem 4.1. Let u_i be anti T_i -fuzzy subgroup of G_i (i=1,2), $\mathscr P$ an isomorphism of M_1 onto M_2 . If T_1 is generated by T_2 via f, then $(\mathscr P, \overline{f}|_{\overline{T}_1(U_1)})$ is an isomorphism of u_1 onto u_2 iff $\overline{f}(u_1(x)) = u_2(\mathscr P(x))$ v $x \in M_1$. Where $\overline{f}(t) = 1 - f(1-t)$ v $t \in I$, $\overline{f}|_{\overline{T}_1(U_1)}$ is the restriction of f to $\overline{T}_1(U_1) \subseteq I$.

Theorem 4.2. Let t-norm T_1 be generated by a t-norm T_2 via f, u_1 an anti T_1 -fuzzy subgroup of G_1 . If M_1 is isomorphic to a certain subgroup S_2 of G_2 , then u_1 is isomorphic to an anti T_2 -fuzzy subgroup of G_2 .

We omit the proofs of theorem 4.1 and theorem 4.2. In theorem 4.2, if we take $G_1 = G_2 = G$, $G_2 = M_1$ and $\mathcal O$ the identical automorphism of M_1 , we get the following corollary:

Corollary 4.1. If t-norm T_1 is generated by a t-norm T_2 , then each anti T_1 -fuzzy subgroup of G is isomorphic to an anti T_2 -fuzzy subgroup of G.

Presenting the examples of isomorphisms of anti T-fuzzy subgroups and

the applications of corollary 4.1, we may prove that for any given t-norm $T \in (T_{SS}U \ T_HU \ T_FU \ T_S) \setminus \{Min\}$, every anti T-fuzzy subgroup of a group G is isomorphic to a T_p -fuzzy subgroup of G or a T_m -fuzzy subgroup of G, wher T_{SS} , T_H , T_P , T_Y and T_S denote the Schweizer-Sklar's, Hamacher's, Frank's, Yager's and Sugeno's families of t-norms, respectively; and $T_p(a,b) = a.b$, $T_M(a,b) = \max(a+b-1,0)$, $\forall a,b \in I$.

References

- [1] A. Rosenfeld, Fuzzy groups, J.Math.Anal.Appl. 35(1971) 512-517.
- [2] J.M. Anthony and H. Sherwood, Fuzzy groups redefined, J.Math.Anal. Appl. 69(1979) 124-130.
- [3] J.M. Anthony and H. Sherwood, A characterization of fuzzy subgroups, Fuzzy Sets and Systems 7(1982) 297-305.
- [4] M.T. Abu Osman, Some properties of fuzzy subgroups, J.Sains Malaysiana 12(2) (1984) 155-163.
- [5] M.T. Abu Osman, On some products of fuzzy subgroups, Fuzzy Sets and Systems 24(1987) 79-86.
- [6] S. Sessa, On fuzzy subgroups and fuzzy ideals under triangular norm, Fuzzy Sets and Systems 13(1984) 95-100.
- [7] P.S Das, Fuzzy groups and level subgroups, J.Math.Anal.Appl. 84(1981) 264-269.
- [8] R.Biswas, Fuzzy subgroups and anti subgroups, Fuzzy Sets and Systems 35(1990) 121-124.
- [9] Yu Yandong, A theory of isomorphisms of fuzzy groups, Fuzzy Systems and Math. 2(2) (1988) 57-68.
- [10] Zhu Nande, The homomorphism and isomorpgism of fuzzy groups, Fuzzy Math. 4(2) (1984) 21-28.
- [11] Wu Wangming, Normal fuzzy subgroups, Fuzzy Math. 1(1) (1981) 21-30.
- [12] Wu Wangming, t-norm, t-conorm and pseudo-complement, J.Shanghai Normal Univ. 4(1984) 1-10.