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Abstract: The concepts of fuzzy oscillator and fuzzyy
controlled oscillator are introduced as a counterpart of
the crisp oscillator and (voltage) controlled oscillator.
The block diagrams of such devices are presented and

computer simulations are discussed.

1. Introduction

As well known, a crisp oscillator is a systems that auto-
nomously generates a periodic signal at its output. If the freqg-

uency of the output signal (and possibly its harmonic content)

can be controlled by a signal (generally a voltage or a d.c.

current) presented to its input, then one gets a controlled os-
cillator (generally known aS‘VCO -- voltage controlled oscillator).
Such systems find an extensive use in communication technology
(e.g. in the so called PLLs -- phase locked loops) and in indust-
rial electronics.

With the advent of "fuzzy PLLs" /1/, /2/,/3/, the question
was asked if fuzzy oscillators can be buil€ up. this paper gives
an answer and tries to expiain how to build such a fuzzy system,
In this purpose, the concept of fuzzy feedback is defined, (section
2), thgn the principles of fuzzy oscillators are discussed (section

%) and finally simulation results are presented (section 4).
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This concept was previously introduced in /4/



2. Fuzzy feedback

This concept was previously introdwced in /4/, /5/.
The simplest way the feedback can be realised for a discrete
time fuzzy set is indicated in Fig. 1 a. In this figure, R
denotes the rules describing the fuzzy system (i.e. the map-
ping of the fuzzy set y_ _, into the set y, ), and
denotes the delay (i.e. a system delafing the output with
respect to the input by time T), A t;ﬂo-input system accepts
two feedback paths derived from the case already discussed.
Such a double feedback loop is sketched in fig. 1.b. Multiple

inputs fuzzy systems can accept a multiple-loops feedback, as

:sketched in fig. 1 c.
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Note that a two-input fuzzy system can use only one of

- the inputs to realize the feed-

back loop, while the other input

JQ - can be used to control the beh-
aviour of the system; see Fig. 2.
Fed _
Fig, 2. A two~input, one feed-
Yo = 2(1,,' YH) . back loop fuzzy system

However, the above discussed feddback fuzzy systems

are not the true counterparts of the crisp systems with

feedback because of the

s
f@ lack of summing nodes.

It is obvious that a

crisp summing node can

not serve as a fuzzy
node. Thus, we need a
specific concept of

node for fuzzy systems,

(For the sampling node,

no difference occurs

between the fuzzy and
the crisp case).

By Yuzzy node'will

be denoted an elementary

Fig. 3. Feedback fuzzy two-input, one-output
systems using fuzzy nodes fuzzy system performing

either the meet (meet

node), or the join operation. Fuzzy systems with feedback,
using fuzzy nodes, are sketched in Fig., 3 for two elementary

cases.,



The extension of the feedback fuzzy system presented in
fig. 2, using a fuzzy node, is presented in Fig. 4. In the

7 system sketched in fig. &,

the input can also be used

<

to control the behaviour of

the output, thus allowing

for the design of controlled

fuzzy oscillators (as expl -
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Fig. 4.Feedback system

ained in the next sections).

based on fuzzy node

3, Basical fuzzy oscillators

Tt is well known that a crisp oscillator is in fact a
crisp unstable system exhibiting a periodical unstability
(in contrast to quasi-periodical and to chaotic unstabilit-
ies), Technically, a crisp oscillator is realised by prov-
iding suitable positive feedback to a stable system.

Following the above idea, let us consider the simplest

feedback configuration sketched in fig. 5. For the analogy
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with the crisp case is complete, let us suppose that the

fuzzy system,described by the set of rules:
Ry ¢ IF x is A, THEN vy is By (1)

is the fuzzy equivalent of an amplifier., Let us detail what
this means. A crisp amplifier has two main features: i)
monotonic (and even linear) behaviour -~ at least in the so
called 'active', or 'linear' region of the input--, and
ii) its characteristic function is increasing. Let us trans-
late this in a linguistic description. Suppose the input is
described by the linguistic degrees A1, A2, ... ,An (ordered
increasingly), and the output of the amplifier is described
by the linguistic degrees B1, B2, ... , Bn (also increasingly
ordered). The above properties require that:
i) if x is Ak and y is Bh, then if x is Ak+q implies
y is Br’ by necessity Br is higher than Bh;
ii) the linearity of the characteristic function ask
-- at least if the linguistic description is good enough~-~

that : (If x is Ak Then y is Bk+q) THEN (If x is A then

k+q+1)°
Note that the value of g will determine the 'linearity

k+1
y is B

region' of the system: it will include n-q linguistic degrees.,
Also note that such a system can be conveniently desc-
ribed by introducing a fuzzy operator which we shall name the
'linguistic shift operator', or simply 'shift operator., Let
denote it by D. Then, the 'fuzzy increasing system', i.e.
the equivalent of the crisp amplifier, is bfiefly‘described
by the system of rules:
IF x is A1 THEN vy is Bgq (initial condition) (2)
1t x is D(a) = DKT(a) THENW y is ]Dk'1(Bq) (3)

In eq. (3), ]D(IZ].);=1D( ]D(...(]D(Ai)...) (4)



Let us also remark that the inverse of the shift operator,
(in the sense of monotonicity) can be defined in a similar
manner and can be used to introduce the counterpart of the
'inversing (crisp) amplifier'. In Fig. 6 are sketched the two
basical fuzzy systems defined by using the direct (right),
and respectively the inverse (left) shift operators. To simp-
1ify notations, in fig. 6 one considers that the input and

the output are characterized by the same class of linguistic

degrees.
‘ Fig. 6. Fuzzy
Ay < Ap< ===mm A: ——
1< A< CA< A< < An systems defined by
A.
i 0 Aisg A o1 1A means of the shift
operators.
D(f=Aj)=A

o1 DK== A,

Further discussion of the fuzzy shifting operators,
including bi-dimensional shift operators, will be given in
another paper.,

Comming back to the system in fig. 5, let us check the
first moments after starting up behaviour. Obviously, the
conditions already asked for do not describe this behaviour.
Thus, initial conditions have to be described, as well as
first moments behaviour. Consider the system is started at
time to. The output of the system in the off state will be
imposed as:

y(t <£t0) = A1 (=B1) (5)
Thus, |
x(t 2to+Z) = A1

(As the delay does not change the nature of its input, the



input and the output to the fuzzy system have to be described
by the same linguistic degrees).
Let us impose that at the start, the output jumps to the
value :
y( to€t < to+ T )= A2 (6)
Then, the input will follow the output with a delay T :
x( to +€ t <to + 2T ) = A2
Now, the system depassed the initial (starting) regime
and its behaviour is described by eq. (1) and eq. (2) and (3)
The system in fig. 5 and which behaviour is above descr-
ibed is, however, not an oscillator. It will behave exactly as
a crisp amplifier provided with positive feedback: it will
'saturate! Indeed, once the output reaches the maximal linguis-
tic degree, the above description does not predict the next
step. The saturation process can be then introduced by the
condition:

IF x is An THEN y is An (7)

To get the desired oscillator, the saturation should be
avoided. By analogy to the crisp case -- more exactly,to crisp
flip-flops realised by using operational amplifiers ~- let us
provide a 'reset' condition, as bellow:

IF x is An THEN y is A1 (8)

Then we get:

Proposition 1. The fuzzy system described by egs. (1),
(2), (with g=2), (3), (with k = 1, ..., n=1), (5), (6) and (8)

is an unstable system with periodical unst&bility.

The proof follows directly from the construction.
Concluding, we got a fuzzy oscillator, with a discrete

output.
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A simple example of fuzzy oscillator can be built using
only five linguistic degrees to describe the input and the
output. The 'linguistic waveform' at the output of this os-

cillator is plotted in fig. 7.
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The question could be sked how to build up a fuzzy
oscillator using a nonlinear fuzzy system with feedback.
Such a question is important in some applications, for ex-
ample when a specific '1linguistic waveform' is needed. To
answer this question and to determine an algorithm to solwve
such a problem, let us first turn back to the simple oscillat-
or already described. First let draw the graph of the outputs
(in fact, of the states of the system) -- see fig. 8, left
side. By re-drawing the graph, one gets a cyclic graph.

The following is obvious:
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Lemma: For a fuzzy system is an oscillator, the graph
of its state transitions should be cyclic.
Now, the algorithm for building a fuzzy oscillator

with given output waveform is transparent:
Algorithm

Step 1- Using the output waveform, draw the output graph
in a cyclic form;

Step 2- Apply the D operator to the graph obtained in
step 1 to determine the corresponding inputs; thus, the rules
describing the system can be layed down (except for the start-
ing rules).

Step 3- Fix the off-condition output and then write
the starting up rulds). |
With the configuration as in fig. 5, the system is al-

ready described.

3.2. Controlled fuzzy oscillators

The controlled fuzzy oscillator can be built either
as a two-inputs, no node feedback system, or as an one-input,
one-node feedback system. A detailed discussion of the cont-
rolled oscillator will be presented in another paper. Note
that in the case of the two-input, no-node case, the discus-
sion in Section 3.1. directly applies in developping the

controlled oscillator.

L, Computer simulation : brief comments

The behaviour of the no-node oscillators is easy to
check even by hand-computation. This is not the case of cont-
rolled,or uncontrolled oscillators involving nodes in the

feedback loop(s). Indeed, in this case, the output of the
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system is by no means restricted to a finite set of fuzzy
values. To check that the system outputs an oscillatory,
periodic signal computer simulation is needed.
Various oscillators were simulatad (PASCAL programs)

to determine their behaviour (period, waveform after defuzzif-

ication, locking time). It was found that fuzzy oscillators
can be used to generate a large variety of waveform. Chaotic
behaviour of some feedback fuzzy systems was also proved.

It is believed that fuzzy oscillators can be succesfuly

used in many applications in communications engineering.



