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1. Introduction

It is well known that even modern control theory has failed to
cope with many control problems in industrial processes, vehicles,
household equipment, etc. etc. The real problem is that classical
control theory describes adequately only a limited class of not
very complex systems. On the other hand, heuristic and intuitive
control by a human operator often solves the problem of
controlling very complex systems in a satisfactory degree. So e.g.
driving a car can be solved by most grown-up people (at least
after a period of appropriate training) but nobody could as far
solve the fully automatic control of driving a car in a real
traffic environment. This system seems to be too complicated to be
modelled satisfactorily by any known mathematical method.

In recent years a good many of succesful control applications
have invaded the market which have the common feature of using the
idea of linguistic/approximate reasoning formalized by fuzzy rules
and inference.

The idea of rule based fuzzy inference was proposed originally
by Zadeh [1]. First applicational results were produced in
laboratory environment by Mamdani and colleagues [e.g. 2]. In the
last years center of gravity of applications has been shifted
unambiguously to Japan where hundreds of real industrial
apllications based on the reserach work done by Sugeno [3], Hirota
[4] and others appeared in the middle of the 80’s.

When using fuzzy inference algorithms to industrial control,
one of the crucial problems is the computational speed of the
applied method. Computational speed is mathematically described by
algebraic complexity. Control methods having good sensitivity have
also high complexity. The compact rule method reproposed by the
Authors [5] combined with some boundedness type restrictions leads
to an acceptable complexity [6,7,8] if the number of rules is not
too high and especially if the support sizes in the rules and
observations are small enough.

The above restrictions however may lead to a ’low density’ of
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rules in the observation and conclusion space. This raises a new
problem in obtaining well applicable control algorithms.

2. The problem of rule interpolation

Let us consider the problem with the generalized modus ponens
illustrated with tomato colours and degree of ripeness by

Zimmermann and Mizumoto [9,10]. We can compare three types of
reasoning:

1. Simple modus ponens.

*If a tomato is red then the tomato is ripe’
’This tomato is red’

'This tomato is ripe.’

2. Generalized modus ponens.

"If a tomato is red then the tomato is ripe’
"This tomato is very red’

"This tomato is very ripe.’

3. Open problem - no conclusion.
'If a tomato is red then the tomato is ripe’
"If a tomato is green then the tomato is unripe’
’This tomato is yellow’

’This tomato is 777’

Let us illustrate reasoning type 3 by a simple figure using
triangular membership functions (Fig. 1). Observation space X
contains colours from a deep green to a deep red and linguistic
fuzzy terms of colours can be introduced over this space: very
green, green, greenish yellow, yellow, reddish yellow, red, very
red. Conclusion space Y contains degrees of ripeness over which
such terms can be introduced: unripe, almost unripe, little ripe,
halfripe, quite ripe, almost ripe, ripe. Rules R1 and R2 are

represented by membership function pairs in X and Y, resp.,
observation 0 is a membership function in X. There 1is no
overlapping between 'yellow’ and ’'green’, neither between ’'yellow’
and 'red’. So using the practical reasoning algorithms applied in
the industry, the conclusion is a membership function identically
0, i.e. no conclusion whatever can be calculated. On the other
hand we feel intuitively that a conclusion ’This tomato is
halfripe’ would be reasonable.

A solution of this contradiction is the introduction of rule
interpolation. Our observation is in some sense between the two
'if-parts’ of rules R1 and R2 so we expect the conclusion also

between the ’then-parts’. An exact formulation of this statement
can be done by using rule interpolation.

3. Linear interpolation of two rules



Let us denote the ’'if-parts’ of the rules by I1 and 12, the

’then-parts’ by T1 and Tz’ respectively. Linear interpolation of

the two rules can be intuitively defined as follows:
distance(O,Il) : distance(O,Iz) = distance(C,Tl) : distance(C,Tz)

where C is the conclusion. This is the philosophy of linear rule
interpolation.

It is not very obvious what is the distance of two fuzzy
terms. as e.g. what is distance(yellow,green). It is possible to
introduce some measure in X and Y. Let us introduce X and Y as
finite intervals [x1’x12] and [y1’y12] where for simplicity we

use:
X

Y

{x X X ,%X ,¥X ,X , %X ,%X ,X ,X ,% ,% } and
2°73" 74’ s’ T8’ "7 T8’ Te” 10" T11° 12

{yi,yz,ys,y4,ys,ys,y7,y8,y9,yio,yll,ylz},
however adding elements 1like X, g etc. if necessary. Then the

distances d(yl,yj) and d(xi,xj) can be defined as |i-j].

These definitions however do not bring us really near to the
idea of the distance of fuzzy terms. If the terms have uniform
shape membership functions the distance can be understood as e.g.
the distance of the maximums. In most of the application cases
however uniformity (including shape and size) cannot be
guaranteed.

We shall introduce another extension of the idea of distance.
Membership function of a fuzzy set can be defined as

p(A) = U a. x(Aa) where A is the a-level set of A. U is
a€l0,1]

understood as sup and Ao stands for supp(A). Our proposal for the

interpolation is that it is calculated on a finite set of a-levels
and distance is calculated for every a-level independently.

Definition 1

Let A(x) and B(x) be two convex fuzzy sets in X, where #X < w,
d(xi,xj) = }i-j| and x < xj iff i < j. Then the lower distance of
A and B is
o a

d (A B ) = d(inf{A}, inf{B})
and the upper distance of Aa and Ba is

du(Aa’Ba) = d(sup{A},sup{B}).

In the practical applications instead of inf and sup, min and max
can be used.
Let us define ’green’ as
{0/x ,0.67/x ,0.67/%x_,0/x ,0/x_,0/x ,0/%x_,0/%x ,0/%x ,0/x ,0/%x ,0/%_ 1},
1 2 3 4 5 8 7 8 9 10 11 12

and 'yellow’ as
{0/x ,0/x_,0/%x ,0/%x ,0/x ,0.67/x_,0.87/%_,0/% ,0/x% , 0/x ,0/% ,0/% },
1 2 3 4 5 (3] 7 11 12

8’ 9’
then green = {x »X 3X i and yellow {x ¥ 0% }.8 The lower

0.67



and upper distances are

dL(greeno.67,yellowb.B7)

du(greeno_67,ye110h%'67) = d(max{xz,xs,XA},max{xa,x7,x8}) =4

Let us return now to the intuitive formula for conclusion C.
on level a we have

d (0,1 ) : d(0,,1, ) =4d(C,T ) : d(C,T, ) and

du(oa’11a) : du(oa’laa) = du(ca’T1a) : du(ca’Tza)’

Solving the above equations for min{Ca} and max(Ca} we obtain

d(min(xz,xs,x4},min{xs,x7,x8}) =4

a o a« o«
. - [wlL.min(Tia) + sz'Min{Tza} wiu.max{Tla} + wzu.max{Tza}]
o o o ’ o o ’
WO+ W WO+ W
« 1 2 o 1 2
where W= d(min{Oa},mln{Iza}) and W, = d(min(Oa},min{Ila}) and
a o« _
WS d(max{Oa},max{Iza}) and Wou d(max{Oa},max{Ila}) or
w® = 1" and w¥ = 1" , similarly w® and w’? which
1L 2L 2L 1L 1U 2U

lead to an equivalent result.
Let us calculate now the interpolation for the conclusion of
reasoning 3. For a we choose the set {0, 0.67}. Then

C, = [(174.y +1/4.y).2,(1/4.y +1/4.y ).2] = ly_V,]

C0.67 = [(1/4.y2+1/4.y10).2,(1/4.y3+1/4.y11).2] = [yB,y7]

(If we wanted to calculate C1 as well, it would require a denser

scale in X and Y otherwise we would find that C1 is the empty

set.)

The reconstruction of C shows the membership function in Fig.
2, which is identical with the obvious definition of ’halfripe’.
so we can reach a conclusion also in case 3:

"This tomato is halfripe’

Another example can be seen on Fig. 3, where although only
triangular membership functions are applied but they have varying
widths. (For simplicity only the indices are marked.) It is enough
to calculate the support and the maximum as linear interpolation
of triangular membership functions always leads to triangular
results. This can be stated also in general:

Statement 1

With triangular membership functions in the rules and the
observation the interpolated conclusion is also triangular and it
is enough to calculate only two different a«-s in order to
reconstruct the conclusion.

In the example there are two rules which can be described
briefly as

RI: 1A3 = 8A12

RZ: 7411 = 2A4 (iAj stands for a symmetrical triangular

membership function with support [1i, jl). The observation is 4AB.
Calculating the weights according to the primed versions we have:



wo= 1/3, W= 1/3, wo.= 1/3, wo.= 1/5; w' = 1/3, w' = 1/4, so the
1L 2L 1H 2H 1 2

conclusion is 5A9. (Validity of the Statement can be checked by

calculations with support and maximum.)

In all the above examples one dimensional X and one
dimensional Y were treated. In the practical application however
usually the rules contain more then one fuzzy variables both in X
and Y which means that observation and conclusion space are
multidimensional. Rules have the form

If xl is Ali and x2 is AZI and ... and xm is Ami

then Y, is Bli and Yy is BZi and ... and Y, is Bni

2

In order to extend the above method for multidimensional rules
(and observations) it is necessary to go back to the idea of
distance between two fuzzy terms. Restricting the examination to
an arbitrary a-level set the distances in all dimensions of X can
be calculated separately as it was done in one dimension. So we
obtain m distance pairs d;,,d ,...,d‘;‘m and le,dzz,...,dZm (cf.

Fig. 4).

For the interpolation a pair of single weighting factors is
necessary which must somehow accumulate the information in all the
distance pairs. we propose the reciproc value of the length of the
"vector’ calculated by taking the distances as components. It is
supposed however that a uniform measure is introduced over all the
componenets of X. By varying the measure scale over the various
dimensions the relative weight of them can be changed. Our
proposal for the weights is:

12

o« _ o 2., & 2 o« 2 -1
W= (J(d“) (@)% +(a® )2 ), ete.

In all dimensions of Y this weights are used in order to
calculate the minimum and maximum of the a-level sets.

Finally, it is necessary to deal with some extremal cases. If
the distance is 0, the corresponding weight will become ’w’. This
means that the other rule will play no role in the calculation of
conclusion. This can be formulated in a Statement.

Statement 2
If the observation is identical with the ’if-part’ of rule Ri

then the conclusion will be identical with the ’then-part’ of the
same rule (TlL

Another extremal case is if the membership function has a
positive value at the ’end’ of X. Then, an ’extrapolation’ of the
function is advisable, e.g. resulting into ’'negative indices’ of
X, an S-shaped membership function can be represented e.g. by an
imaginary support limit in -o or +w. The use of such corrections

of the method requires some more theoretical and practical
investigations.

4. General interpolation

In Section 3 only the case of interpolation on the basis of



two rules was treated. However, the idea used there can be
extended for an arbitrary number of rules, supposing that the
observation is flanked from both sides by at least one rule. If
distance-reciproc weights are used the proportional role of each
rule is guaranteed.

It is interesting to check what is happening in the case of
several (more than 2) rules in the context of Statement 2. As
Rules are different from each other, it can be also supposed that
their ’if-parts’ are different. So there is maximally one rule for
which the ’'if-part’ is identical with a given observation. In that
case however the weight attached to this rule will be overwhelming
in comparison with all the other rules and so the conclusion must
be identical with the ’then-part’ of the mentioned rule.

Also linearity is not necessarily kept as a rule. Rules
located far away often are not very important for a given
observation so e.g. the square of the distance can be used as
reciproc weight. Every kind of interpolation where the weights
obtained by some mapping of the ’distance of two membership
functions’ (in the sense as it was introduced in this paper) and
the following properties hold:

w(d) is a monotonously decreasing function of d in [0, +w)

w(0) >
lim w(d) =0
d->0

Statement 2 will be valid.

A problematic question 1s the inhomogeneity of measure over
various dimensions in the observation space. A way out is
presented by general normation. Fuzzy terms over a given fuzzy
variable are usually expressing different fuzzy degrees of a given
fact. In our example with tomatoes it is known that the colour of
a tomato varies from deep green to deep red during the phases of
its ripening. This offers the possibility of projecting the given
finite scale of colours into e.g. the interval [0,1], so that
'very green’ starts with O and ’'very red’ ends with 1. Then the
term ’'yellow’ will be described e.g. by 0.4A0.6. Similarly the
size of a tomato will vary from ’very small’ to 'very large’
(e.g. 2cm to 10cm diameter) and this size is also normed 1i.e.
projected to [0,1]. Then the 'Euclidean distance’ of the minimums
of two a-level sets (calculated by the square root of the sum of
component distance squares) has some meaning easier to understand
in a given application context.

It 1is not without interest to examine the problem of
complexity in connection with interpolation. It is easy to prove
that in case of bounded rules the interpolated conclusion will be
also bounded by the same upper bound. This fact enables the use of
bounded compact rule reasoning algorithm over a bounded subspace
in XxY with no dependence on the number of rules, when calculating
the center of gravity (cf. [8]).

The use of rule interpolation opens some new possibilities to
industrial application of fuzzy control.

References



[1] L.A. Zadeh: Fuzzy algorithms. Information and Control 12,
94-102 (1968).

[2] E.H. Mamdani: Application of fuzzy algorithms for the control
of a dynamic plant. Proc. IEE 121, No. 12, 1585-1588 (1974).

(3] M. Sugeno and M. Nishida: Fuzzy control of model car. Fuzzy
Sets and Systems 16 (1985), 103-113.

[4] K. Hirota, Y. Arai and Sh. Hachisu: Real time fuzzy pattern
recognition and fuzzy controlled robot-arm. Preprints of Second
IFSA Congress, Tokyo, 1987, 274-277.

[6] L.T. Ké6czy and K. Hirota: Fuzzy inference by compact rules.
Proc. of Int. Conference on Fuzzy logic & Neural Networks IIZUKA
’90, Iizuka, Fukuoka, 1990, 307-310.

[6] L.T. Kéczy: Complexity of bounded compact rule based fuzzy
inference. Proc. Third Joint IFSA-EC and EURO-WG Workshop on Fuzzy
Sets, Visegr4dd, 1990, 59-60.

[7] L. T. Kéczy: On the computational complexity of rule based
fuzzy inference. Submitted to NAFIPS-91, Columbia, Missouri, 1991.
[8] L.T. Kéczy: Complexity of fuzzy rule based reasoning.
Submitted to EURO XI, Aachen, 1991.

[{9] M. Mizumoto and H.J. Zimmermann: Comparison of fuzzy reasoning
methods. Fuzzy Sets and Systems 8 (1982), 253-283

[10] H.J. Zimmermann: Fuzzy set theory - and inference mechanism.
NATO ASI Series F48: G. Mitra (ed.): Mathematical models for
decision support, Springer, Berlin - Heidelberg, 1988, 727-741.



yellow XY = colours
0.5
05 colure
0.25. A\ Y = rip
PRSI RIF FIP) |
Figure [.
ﬂ *
Al halfripe
075
C: o5
oz5 y

t 1 L 4 1 Al A\ ]
/12345¢T78910112

F:’gure 2.



rsTeTes o 2

8, (y)

IRAFNAG A ] 0" It t2.

. o/“ /.
os] \Aq (%) o
0.5 Py
0.25" >
0 - Y T \ ' i ' ';-{ X 0
1'2'3%45¢6 7890112
/ 7 g
0 ] 1.0 N
015 Ay (x) 0L
¥ 0§54
0.25% o
o ' Y NS S S e n °
2356 76510 ”’zxoﬂ
/,D/{ 1.0]
e O(x) 0.75-
o] 05-
ax: %3
4] | PGS S P Y 0
723 4 s ¢ 78 9o i1z

Fiqgure 3.

; 2|3l+r|6'7'8 g0/ 12




