A.K.Chaudhuri and P. Das
Department of Mathematics
Visva-Bharati University
Santiniketan, West Bengal

India.

Abstract: The interrelationship between different notions of connectedness of fuzzy sets introduced by Ming and Ming[3], Zheng Chong You[5], Saha[4],Azmal and Kohli[1] is investigated. A new concept of connectedness called $^{\rm C}_5$ - connectedness of a fuzzy set is introduced and the validity of the standard results for the new concept of connectedness are examined.

Let (X,T) be a fuzzy topological Space.

If $A \in I^X$ be connected in the sense of Ming and Ming[3](resp.Saha[4]), then we say that A is C_M -connected (resp. C_Q -connected.)

The following results are obtained:-

Theorem 1: If $D \in I^X$ be C_1 -connected, then D is C_S -connected.

Theorem 2: If $D \in I^{\times}$ be C_S -connected, then D is C_2 -connected.

Theorem 3: If $D \in I^X$ be C_S —connected, then it is C_3 —connected.

Theorem 4: D (1 is C₂-connected iff it is O-connected.

Theorem 5: A fuzzy C4-connected set is O4-connected.

Remark 6: In a fuzzy topological space (X,T), the interrelationship between the classes of D -connected, D_{Q} -connected and C_{i} -connected (i=1,2,3,4,S,M) fuzzy sets can be described by the following diagram.

Examples have been given to show that the reverse implications do not hold.

A new concept of connectedness of a fuzzy set.

In a topological space (X,T) a subset E of X is connected iff there does not exist any non-empty proper clopen subset in (E,T_E) where T_E is the reletivization of T in E.The open(closed) subset of (E,T_E) are the intersection of open (closed) subsets of (X,T) with E.

Let (X,T) be a fuzzy topological space and $E\in I^X$. We define $T_E=\{B\land N;\ N\in T\}$ and $C(T_E)=\{B\land P;\ P\in C(T)\}$. We call the members of $T_E(C(T_E))$ as fuzzy open (or closed) sets in D.

Definition 7: D

Examples have been given to show that $C_{\overline{5}}$ -connectedness is totally different from all other types of connectedness

mentioned emilier.

Theorem 8: Let f:(X,T)=-(Y,S) be bijective and fuzzy continuous. If $D\in I$ be C_5 -connected, then f(D) is also C_5 -connected in Y.

Theorem 9: Let $\{A_i^c, i \in J\}$ be a collection of C_5 -connected fuzzy sets, any two of which are intersecting. Then $A = \sum_{i \in S} A_i \in C_5$ -connected.

Remark 10: The fuzzy closure of $\rm C_5$ -connected fuzzy set is not necessarily $\rm C_5$ -connected.

 $C_{\overline{5}}$ -component is defined and the validity of some well known results are investigated.

Referencess

- 1.Naseem Azmal and J.K.Kohli, Connectedness in fuzzy topological spaces, Fuzzy Sets and System, 31(1989) 369-388.
- 2.C.L.Chang, Fuzzy topological spaces, J.Math.Anal.Appl.24 (1968) 182-193
- 3.P.P.Ming and L.Y.Ming, Fuzzy topology I.Neighbourhood structure of fuzzy point and Moore Smith Convergence, J.Math.Anal.Appl.76(1980)573-599.
- 4.S. Saha, Local connectedness in fuzzy setting, Sigmon Stevin, a quarterly journal of pure and applied mathematics, 61 (1987) 3-13.
- 5.Zheng Chong You, On connectedness of fuzzy topological spaces, Fuzzy Mathematics 3(1982) 59-66.