Some Correspondence Theorems on t-fuzzy subgroups

M. M. Zahedi and M. Mashinchi
Mathematics Department,
Kerman University, Kerman, Iran

Dedicated to Alireza Afzalipour the founder of Kerman University

Abstract

Recently some authors have considered the notion of t-fuzzy subgroup and proved some basic results (see references). Here we will prove some correspondence theorems for t-fuzzy (normal) subgroups.

Keywords: t-norm, t-fuzzy (normal) subgroup.

1. Preliminaries

From now on T is a continuous t-norm, unless otherwise stated, χ stands for the characteristic funtion, and G, G' are groups with identity elements e, e', respectively. If μ , η are fuzzy subsets of a non-empty set S, we write, $\mu \subseteq \eta$ iff $\mu(x) \le \eta(x)$ for all $x \in S$.

Definition 1.1. Let T be an arbitray t-norm. The fuzzy subset μ of G is called t-fuzzy subgroup of G, iff

- (i) $\mu(xy) \ge T(\mu(x), \mu(y)); \forall x, y \in G.$
- $(ii) \quad \mu(x^{-1}) = \mu(x); \ \forall \ x \in G.$

we denote it by $\mu < G$.

Definition 1.2. Let $\mu <$ G. Then μ is called a t-fuzzy τ normal subgroup of G, iff $\mu(xy) = \mu(yx)$ for all $x,y \in$ G. We denote it by $\mu \triangleleft$ G.

A justification for Definition 1.2 can be obtained from the following theorem.

Theorem 1.3 [9, Theorem I.2.18]. Let $\mu < G$. Then the following conditions are equivalent:

- (i) μ **q** G
- (ii) $\mu(xyx^{-1})=\mu(y)$; for all $x,y\in G$
- (iii) $\mu(xyx^{-1}) \ge \mu(y)$; for all $x,y \in G$.

2. Some related results

In order to prove the correspondence theorems in section 3, we give some related results.

Theorem 2.1. Let $f:G \rightarrow G'$ be a homomorphism, then

- (i) if μ < G, then $f(\mu)$ < G',
- (ii) if $\mu \triangleleft G$ and f is surjective, then $f(\mu) \triangleleft G'$.
- (iii) if $\chi_{\text{Ker } f} \subseteq \mu$, then $f(\mu)(e')=1$.

Theorem 2.1(i) under sup property condition, has been

given for t-fuzzy subfields in Proposition 3.5 of [3], and for L-fuzzy subgroups in Theorem 2 of [6].

Corollary 2.2. Let N \triangleleft G and $\mu <$ G ($\mu \triangleleft$ G). Then $\bar{\mu} <$ G/N ($\bar{\mu} \triangleleft$ G/N), where

$$\widetilde{\mu}(\widetilde{g}) = \sup \mu(x); \quad \widetilde{g} \in G/N.$$
 $x \in \widetilde{g}$

Moreover, if $\chi_{N} \subseteq \mu$, then $\overline{\mu}(N)=1$

The following corollary shows that Corollary 2.2 is a generalization for the normal part of Theorem 3.11 of [1], and Theorem 2.4 of [5].

Corollary 2.3. Let N, μ , and $\overline{\mu}$ be as in Theorem 3.11 of [1]. Then $\overline{\mu}_{\min}^{\mathbf{G}} \mathbf{G}$, and it is equal to that defined in Corollary 2.2.

In the following lemma by f-invariant we mean as in [7, p.515].

Lemma 2.4. Let $f: G \rightarrow G'$ be a homomorphism, T be arbitrary, and $\mu' < G'$ ($\mu' \triangleleft G'$). Then $f^{-1}(\mu') < G$ ($f^{-1}(\mu') \triangleleft G$), and it is f-invariant. Moreover, if μ' (e')=1, then $\chi_{\ker f} \subseteq f^{-1}(\mu').$

Also see Proposition 3.5 of [3].

Remark 2.5. Since in Theorems 3.9 and 3.12 of [1], one can write $\lambda = f^{-1}(\mu)$, where f is ϕ or θ , so Lemma 2.4, generalizes these theorems.

Corollary 2.6. Let NqG, and $\mu' < G/N$ ($\mu' < G/N$), and T T t be arbitrary. Then $\mu < G$ ($\mu < G$), where T T $\mu(g) = \mu' (gN); \forall g \in G.$

Moreover, if $\mu'(N)=1$, then $\chi_N \subseteq \mu$.

Lemma 2.7. Let $f: G \to G'$ be an epimorphism, $\mu < G$, τ $\chi_{\ker f} \subseteq \mu \text{ and } T \text{ be arbitrary. Then } f^{-1}(f(\mu)) = \mu.$

3. Correspondence theorems

Theorem 3.1. Let $f:G \to G'$ be an epimorphism. Then there is a bijedtion ψ between the set S of all t-fuzzy (normal) subgroups of G containing $\chi_{K \to Y}$ and the set S' of all t-fuzzy (normal) subgroups of G' that are equal to 1 on G'.

Corollary 3.2. For a group G, there is a bijection between the the set of all t-fuzzy (normal) subgroups of F containing $\chi_{\text{ker }f}$ and the set of all t-fuzzy (normal) subgroup of G that are equal to 1 on e, where $f:F \rightarrow G$ is suitable epimorphism for a well chosen free group F.

Corollary 3.3. Let NaG. Then there is a bijection ψ between the set 8 of all t-fuzzy (normal) subgroup of G containing χ_N and the set 8' of all t-fuzzy(normal) subgroup of G/N that are equal to 1 on N.

Theorem 3.4. Let $f:G \rightarrow G'$ be an isomorphism, and T be arbitrary. Then there is a bijection w between the set \$ of all t-fuzzy (normal) subgroups of G and the set %' of all t-fuzzy (normal) subgroups of G'.

Lemma 3.5. Let $f:G \rightarrow G'$ be an epimorphism. Then S' = D', where

(i)
$$\mathbf{S}' = \{ \mu' \mid \mu' < G' \}, \ \mathcal{D}' = \{ f(\mu) \mid \mu < G \},$$

(i)
$$\mathbf{g}' = \{ \mu' \mid \mu' < G' \}, \ \mathcal{D}' = \{ \mathbf{f}(\mu) \mid \mu < G \},$$

(ii) $\mathbf{g}' = \{ \mu' \mid \mu' \triangleleft G' \}, \ \mathcal{D}' = \{ \mathbf{f}(\mu) \mid \mu \triangleleft G \}.$

Corollary 3.6. Let N \triangleleft G and $f:G \rightarrow G/N$ be the canonical homomorphism. Then $\mathbf{3'} = \mathbf{D'}$, where

(i)
$$\mathbf{8'} = \{\mu' \mid \mu' \leq G/N \}$$
, $\mathcal{D'} = \{\overline{\mu} \mid \overline{\mu} \text{ as in Corollary 2.2, } \mu \leq G \}$,

(ii)
$$\mathbf{S}' = \{\mu' \mid \mu' \triangleleft G/N \}$$
, $\mathcal{D}' = \{\overline{\mu} \mid \overline{\mu} \text{ as in Corollary 2.2, } \mu \triangleleft G \}$,

Corollary 3.7. Let $f:G \rightarrow G'$ be an epimorphism. Then there is a bijection between the set of all t-fuzzy (normal) subgoups of G' and the set of all t-fuzzy (normal) subgroups $\bar{\mu}$ of G/Ker f as defined in Corollary 2.2.

Note that the above corollary extends Theorem 3.9 of [8].

Acknowledgement: The authors would like to thak the Institute for studies in Theoretical physics and Mathematics (Iran) for their financial support.

REFERENCES

- [1]. Mustafa Akgul, Some properties of fuzzy subgroups, J. Math. Anal. Appl. 133(1988), 93-100.
- [2]. M. T. Abu Osman, On some product of fuzzy subgroups,
 Fuzzy Sets and Systems, 24(1987), 79-86.
- [3]. M. T. Abu Osman, On t-fuzzy subfields and t-fuzzy vector spaces, Fuzzy Sets and Systems 33(1989), 111-117.
- [4]. J. M. Anthony and H. Sherwood, Fuzzy groups redefined, J. Math. Anal. Appl. 69(1979), 124-130.
- [5]. P.Battacharya and N.P.Mukherjee, Fuzzy groups: Some group theoretic analoges, Information Sciences 41(1987), 77-91.
- [6]. M. S. Eroglu, The homomorphic image of a fuzzy subgroup is always a fuzzy subgroup, Fuzzy Sets and Systems 33(1989), 255-256.
- [7]. A. Rosenfeld, Fuzzy group, J. Math. Anal. Appl. 35(1971), 512-517.
- [8]. M. M. Zahedi and M. Mashinchi, Some results on redefined fuzzy subgroups, J. Sci. I. R. Iran 1(1989), 65-67.
- [9]. M.M.Zahedi, Fuzzy Algebra (groups, rings, modules)
 Ph.D. Thesis, 1990, Kerman University, Kerman
 University, Kerman, Iran.