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Abstract
Recently some authors have considered the notion of
t-fuzzy subgroup and proved some basic results (see
references) .Here we will prove some correspondence

theorems for t-fuzzy (normal) subgroups.
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1. Preliminaries
From now on T is a continuous t-norm, unless
otherwise stated, x stands for the characteristic
funtion, and G, G’ are groups with identity elements e,
e’ , respectively. If u, 7n are fuzzy subsets of a
non-empty set S, we write, u € 9 iff p(x)<n(x) for all
X€S.

Definition 1.1. Let T be an arbitray t-norm. The

fuzzy subset pu of G is called t-fuzzy subgroup of G, iff



() H(xy)ZT(p(x) . 1(Y)); ¥ x,ve G.
(i) p(x?) = u(x); V xeG.

we denote it by u<G.
T

Definition 1.2. Let u< G. Then u is called a t-fuzzy
T

normal subgroup of G, iff u(xy) = n(yx) for all x,ye G.

We denote it by ua G.
T

A justification for Definition 1.2 can be obtained

from the following theorem.

Theorem 1.3 [9, Theorem 1.2.18]. Let u < G. Then the
T .
following conditions are equivalent:

(i) na G
T

(ii) u(xyid)-p(y); for all x,yveG

(iii) u(xyid)zu(y): for all x,yvyeG.

2. Some related results

In order to prove the correspondence theorems in

gsection 3, we give some related results.

Theorem 2.1. Let f:G—G’ be a homomorphism, then

(i) if u< G, then f(u)< ¢,
T T

(ii) if » 9 G and f is surjective, then f(u)a G .
T T

(iii) 1if Xpar fSu, then f(u) (e’ )=1.

Theorem 2.1(i) under sup property condition, has been



given for t-fuzzy subfields 1in Proposition 3.5 of [3],
and for L-fuzzy subgroups in Theorem 2 of ([6].

Corollary 2.2. Let N 4 G and pu<G (u« G). Then
T T

u<G/N (q<a G/N), where
T T

p(g)=sup u(x); ¥ geG/N.
x€g

Moreover, if xySu, then #(N)=1
The following corollary shows that Corollary 2.2 is a
generalization for the normal part of Theorem 3.11 of

[1], and Theorem 2.4 of [5].

Corollary 2.3. Let N, u, and 1 be as in Theorem
3.11 of [1] . Then Eﬁ.mG, and it is equal to that
defined in Corollary 2.2.

In the following lemma by f-invariant we mean as in

{7, p.515].

Lemma 2.4. Let f:G—G’ Dbe a homomophism, T be

arbitrary, and u’ <G’ (' <a G’ ). Then f *(u )<G (f ' )% G).
T T T

and it is f-invariant. Moreover, if u (e’ )=1, then

= 4
Xyor fo ().

Also see Proposition 3.5 of {[3}.

Remark 2.5. Since in Theorems 3.9 and 3.12 of [1].
one can write A=f*(u), where f is ¢ or 8, so Lemma 2.4,

generalizes these theorems.



Corollary 2.6. Let NaG, and ¢ <G/N (& a9 G/N), and T
T T

be arbitrary. Then u<G (u<aG), where
T T

u(g)= (gN); VY geG.
Moreover, if ' (N)=1, then xNSu.

Lemma 2.7. Let f:G—G' be an epimorphism, u<G,
T

x < and T be arbitrary. Then f—‘(f(u))=u.

Ker f

3. Correspondence theorems

Theorem 3.1. Let f:G—G' be an epimorphism. Then
there is a bijedtion y between the set & of all t-fuzzy
(normal) subgroups of G containing Xyort and the set ¥

of all t-fuzzy (normal) subgroups of G’ that are equal to

1 on e .

Corollary 3.2. For a group G, there is a bijection
between the the set of all t-fuzzy (normal) subgroups of

F containing x

and the set of all t—-fuzzy (normal)
Kel f

subgroup of G that are equal to 1 on e, where f:F—G is

suitable epimorphism for a well chosen free group F.

Corollary 3.3. Let NaG. Then there is a bijection v
between the set ¥ of all t-fuzzy (normal) subgroup of G
containing XN and the set ¥ of all t-fuzzy(normal)

subgroup of G/N that are equal to 1 on N.



Theorem 3.4. Let f:G—G’ be an isomorphism, and T be
arbitrary. Then there is a bijection v between the set ¢
of all t-fuzzy (normal) subgroups of G and the set ¥

of all t—fuzzy (normal) subgroups of G’ .

Lemma 3.5. Let f:G—G be an epimorphism. Then ¥ =2 ,

where

(1) ® =( | <G}, I={f(n)]| u< G},

T T
(i) & =( |a G}, I=(f(u)| ua G}.
T T

Corollary 3.6. Let NG and £f:G—G/N be the canonical

homomorphism. Then ¥ =% , where

(V) @ ={ | <G/N }, ¥ ={u|u as in Corollary 2.2, u<G },

T T
(i) & ={u’ | 9G/N }, & ={uip as in Corollary 2.2, uaG },
T T

Corollary 3.7. Let f:G—G’ be an epimorphism. Then
there is a bijection between the set of all t-fuzzy
(normal) subgoups of G’ and the set of all t-fuzzy
(normal) subgroups u of G/Ker f as defined in Corollary

2.2.

Note that the above corollary extends Theorem 3.9 of

[81.
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