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Dvurelenskij in [1] have pfoved %;hé Radon~Nikodym theorem
for fuzzy probability spéces’. In the present peper, we give
a simplier proof of this theorem using the fuzzified random.
variables presented in [8] .' Our method allows to present many
other interesting results of probabil_ity theory.
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1s Introduction

Let ({L, M) be a fuzzy quantum space in sense of [3] s 1oes
0. .
.Q. is a nonempty set, MC [0,1‘]- .is a soft fuzzy G-algebra of
fuzzy subsets of L2 (see [:9] )e Recall that it means o

Oq € M | (1.1)
aelM —\a’ =1 ~-~8¢eM o (1.2)
{ai}CH :’.:>Va.i = sup avi €M B . (1.3)
(1/2), ¢ M ‘ o (1.4)

A fuzzy observable x of (), M) (see [3] ) is a. G ~homomorphism,

x:B—3 M (Ris the system of all Borel subsets of real line),
¥EeD: x(E®) = x(E)’ - o (1.5)
¥{E}cB: =(UE;) =Vx(E) o (1.6)

We recall some notions and results of [1] .

Let a €M be a fuzzy subset off) . Let define a mapping x,,

Xg: B— M, via

PN, R R
A . N




ala’ 12 0 end 14 E
L4

a if O€E and 14E
xg(E) = § o it 04E and 1 €E (1.7)
aVa’ if 0 and 1¢E

Then x, 1is a}fuzzy observable of (2, ¥) called an indicator
of a fuzzy set a,
A mepping v:M —» R 1is said to be a signed fuzzy measure
(see [1] ), 1ff |
¥aeM: v(ave’) = vilg) (1.8)
’Q‘{ai} M, 8 < a5 whenever 1 A 3: v(Veay) = Zvia) (1.9)
If v 15 positive, then it is named a fuzzy measure. If for |
8 measure m we ha#e m(1g) =1, thgh m is a fuzzy P-measure
(see also [9] de
We say that a signed measure v is dominated by & measure m,
v& m, if m(a) =0 implies v(a) = O. |
The measure spectrum of an observable x in & measure m is
the set _
Gﬁ(x)ﬂ=(\{0: C is closed, m(x(C)) = m(141)} (1.10)

Let m be a fuzzy measure on (N, M). A mapping m_ ,

mx(E) = m(x(E)) , E€3, is a measure on 33 . This enables to de-

fine an integrel of x with respect to a fuzzy measure m by the

expression _
gx dm = § % dm (%) , (1.11)
R .

if the right-hand side exists and is finite. If h is & Borel-

transformation, then h(x(E)) = x(h-1(E)) defines a fuzzy obser-

veble of (L2, M) and under the conventional assumptions on the

integrability we have
( dm =
{n(x) dm = %h(t) am_(+) (1.12)




In [3,4] was introduced the algebralc structure of the spece

of fuzzy observables, Note, that z = =z + y 11If

¥teR: z2(J=w,tl) = \/Q (x(A=o0,L)A yT=00,t=xL)) - (1.13)
o re

Here Q is the set of all rational numbers. -

We say that two fuzzy observables x and y of (N}, M) are
equal almost everywhere with respect to a fuzzy measure m,
x =y a.efum], if g (x-¥) = {o}.

We define an indefinite integral of an observable x over
a fuzzy set e€M via.

v(a) = §xdm = fx.xa dm . (1.14)
a

It is easy to see that v defined in (1,14) 1s & signed fuzzy mea-
sure dominated by m, More, if x =y a.e.[m] , then for every

a € M we have S x dm = f y dm . A converse assertlion is the mean
a a

result of [1] .

Theorem 1,1.(Radon~Nikodym). Let v be a signed fuzzy measure on
a fuzzy quantum space (fL, M), which is domrjnated by & measure m.
Then there exists & fuzzy observable x of (), H) such that
YaeM: v(a) = f xadm .
a
If v(a) = S y dam , for every a €M, for anothef fuzzy observable

'y , then xa= ¥ a.e.[nﬂ .

In [8] , we have introduced & notion of & fuzzified reel ran-
dom variable (f,c) , where f is a real random variable and ¢
some fuzzy subset of M. Ve have given an algebraic structiure pre-
serving isomorphism of fuzzy observables and classes of eQuiva—
lence of fuzzified random variables. For details see section 2,

The calculus of fuzzified random variables is simplier and clea-




rer, This fact simplifies the situation and gives & new tool

for. proving the results of the fuzzy obsexvable theory.

2, Fuzzified random variables

Piasecki in [9] had spown that a fuzzy probability speace
(1, M, m), where m is a fuzzy P-measure on M, inducesa clagsi-

cal probability space (., K(M), P ). Here

K(M) ={rAcQ:idaceh, {a> 1/2}cac{a ¥ 1/2} } (2.1)
P (A) = m(ae) for aay A€ K(M), where the relation
of a& and A is given by (2.1) | (2.2)

Definition 2.1, Let £ be a K(M)-measurable real random variable.
Then & couple (f£,c), c€M, ¢ & ¢, will be called & fuzzified
rendom variable on (Q, M) 1ff for every E ¢ BPwe have

xz(E)e M , where

-1
| 27 (E)
X(E) = {c . o . (203)

L4

c else

It is easy to see that x defined Dby (2,3) is =& fdzzy observable
of (N1, M). On the other hend, let x be any fuzzy observable of
(N M. Then for any fixed cw €f) we have

x(R) () if &> fx(c»)

¥ teR: x(ev,t) = = -0 )(C*’)‘ x(R) (ew) if t42 ()

. o (2.4)
For details see e.Ze [5,7] . Here f_(w) is & real constont
uniquelly determined by x endewv 1f x(R)(ew )> 1/2 o If x(R)(cw)
is equal to 1/2', then x{ew ,t} = 1/2 for any t, so that fx(QJ)
can be chosen arbitrariiy. The function fx will be called
8 crisp projection of x and it is & K(M)-measurable real random

variable, see [5] « It is easy to see that the couple (f_,x(R))
, X




is & fuzzified random variable, Further, if g_ is another crisp

pyojection of x, then
{t, A8, Yc{x(R) = 1/2% (2.5)

The results of [2,6] show that, for ény random variable f
on (N1, K(M)), there exists a fuzzified random variable (£,c)e
Two fuzzified rendom variables (f,c) and (g,d) are said to be
equivalent 1f they induce the same fuzzy observable X, ie.e. 1if
c=deand {fglcfe=1/2}.

In[ﬁ] is defired an algebraic structure of fuzzified random

varlebles,
(f,C)@ (8.5-) = (f+g,CA d) (2.6)
(£,0) @ (2,d) = (feg,cAd) . (2.7)

If h i3 a Borel tranaformation (1- or 2-dimeasional),then
h((f,c)) = (h(f),c) , or
n((f,c),(g,d)) = (h(f,g)ycAa)

is a fuzzified random variable,

(2.8)

The main result of [8] is the next one.

Theorem 2.1. (2.3) and (2,4) define an algebraic structure pre-
serving isomorphism of fuzzy observables of (£}, M) and classes

of equivalence of fuzzified random varlables on (f), M),

Example 2.1, Let Xq be an indicator of a fuzzy set a€&M. Then
the corresponding class of fuzzified random variables 1is
{(t,ava’) , £ =1if ada’, £ = 0 if &l e’} Let I, be a cha-
racteristic function of & crisp set A. Then A g K(M),

{&>1/2}CAC{a Y 1/2} 1ff I, is & crisp projection of x_ .

»

3. The Redon-Nikodym theorem

At first, we introduce some simple facts.




Lemma 3.1. Let v be & signed fuzzy measure on (L2, M), Then
the mapping P_: K(M) —R ,
P (A) = v(a) - for a, A given by (2.1) (3.1)
is & signed measure on K(M). If v is a fuzzy measure, then P
is a measure, Lf v is a fuzzy P-measure, then Pv is a probabili-

ty measure.

Proof, For the last case of & fuzzy ?-measure see [9] . The other

cases are similar,.

Lemma 3.2, Let x and y be two fuzzy observables of (M, M) and
let fX and fy be the corresponding crisp projections, Then
X =Y a.e.[m] iff fx = fy a.e.[E}J for any fuzzy measure
m defined on (N1, M).

: ~1/¢
Proof, We have S _(z) ={O}ifﬁ m(z{0}) = P (£, (fo})) =14 .
Hext, fx - f 18 a crisp projection of X - ¥ Now, it is

to fake
enoughivinto account the fact thet x =7V a.e.[m] 1£f & (x=y)

is {0} .

Lerma 3.3. Let x be a fuzzy observable of (N , M) and let f_ De
1ts crisp projection., Let a €M and A€ K(M) be given (in sense
of (2.1)). Then for any fuzzy measure m Ol M we have

Sxdm=£rxd}?m (3.2)
a

Proof. The fact m(x(E)) = Pm(f;1(E)), for any E €3, implies
§xdm=§f_ dP . On the other hand, I, is & crisp projection
of x,, hence £..I, is a crisp projection of X.% ., It follows
é x dm = (x.x, dm = {2 .T, dP ={ £ 4P q.e.d.
Proof of the Theorem 1.1.

1) Let v be a signed fuzzy measure on (5D, M) dominsted by

a fuzzy meg@sure In, Then the signed measure Py on (N, K(M)) is




dominated by the measure F . The classical Radon-Nikodym theorem
implies the existence of a K(M)-measurable tntegrable random
variable f such that

¥ hex@: R (&) =Sraz, .

Then there exists a fuizy observable x (sée Ce e [2,6] ) of
(N, M) such that £ is its crisp projection., Now, Lemma 3.2+
implies

¥ acM: v(e) = Sxdm'

ii) Let y be another fuzzy observable of (N2, M) .such that

for any a &M we have v(a) = § y dm, Let g be a crisp proaection
a .

of y. Then for any A€ K(M) we get § e dP
: A

S g dP_ . It follows
A m

f =g a.e.[PmJ and Lemma 3.2, implies X =¥ a.e.[m] q.e.d.
Remerk 3.1. A crisp projection £, of & fuzzy observable x is in
fact a representation of x by & real random variable presented
in [2] . This fact imply the similar idees of our paper and of
[2] in proving Theorem 1.1. Note thet the methods used in [2]
are mainly based on the Loomis-Sikerski theorem. On the other
side, our method is based on the isomorphism of fuzzy observab-
1es and clesses of equivalence of fuzzified rendom variables.

This isomorphism is & constructive one due %o (2.3) and (2.4).

4. Applications

Let (N, M, m) be & fuzzy probabiliiy space, i,e. mis
e fuzzy P-measure on M, Let Mo be a soft fuzay sub-ag ~-3lgebra
of M, FPor a given fﬁizy observable x of (N, M), we call a fuzzy
observeble y of (A, Mo) as the conditional mean value of X

with respect to M , ¥ =-Em(x/Mo), if for eny a€ M  we have



fydm={ x dn o (441)
8, a

The existence of Em(x/Mb) is shovmn in [j] ., It is easy to see
that for a crisp projection fy of y we have

It means that a crisp projection of & conditional mean value
of a fuzzy observable x is a conditional meen value of 1ts crisp
projection Ix. |
If z is eanother fuzzy observable of (2, M), denote

M, = {2(E), E€BlU {0y, 10t (4.3)
Then by [1] we can define & conditional mean velue of x with
respect to. .z as follows:

y = E (x/2) = E_(x/M,) (4.4)
It ig easy to see that y 1s isomorphic td@ class of fuzzified
randem variables {(fy,z(R))} , where fy = EPm(fx/fz) . By (2.3)
we get

| .
R £-Y(E)
\‘Eé.?::y(ﬂ):{Z( ) oom Ly (B

, (4.5)
z(R) else
For & conditional probability Pm(a/b), a, b¢M, defined in [{],

we get bAb” if m(a/b)é E, m(a/b") ¢ E
b 1f m(a/b)€ E, m(a/b") ¢ E

YEeS : Pm(‘*"/b> =94 b’ 1¢ m(a/b)¢ E, m(a/b )€ E (4.6)
byb’ if m(a/b)€ B, m(a/b") &E

Note thet by Piasecki [9] we have

m(a/b) = m(aA b)/m(b) if m(b)> 0 (4.7)
For m(b) = 0 we can choose m(a/b) arbitrarily, e.g. m(a/b) =0 .
In the classieal probability theory we have

P(IA/IB) = h(IB) (4.8)

where b is any injective Borel transformation such that




h(0) = P(A/B')and h(1) = P(A/B), In the fuzzy case we are in
quite similar éituation.7(4.6) implies

P(a/D) = h(xy) (4.9)
where h is any injective Borel transformation such thet
h(0) = m(a/b") and h(1) = m(a/b) .

Using formule (4.2) we can prove many other interesting re- ~
sults, e.g. the martingale convergence theorem. From other pos-
sible results, we can introduce the strong law of large numbers,
the central limit theorem, the Hahn-Jordan decomposition of

fuzzy meazures, more-dimensional fuzzy observables calculus etc,
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