FUZZY CONVEX FUNCTIONS: A RUDIMENTARY THEORY AND ITS USE IN FUZZY - VALUED INEQUALITIES

ZHOU Feiyue

Department of Mathematics, Xiangtan Teachers' College, Hunan, China

This paper intends to establish a rudimentary convexity theory for the fuzzy-valued functions of a fuzzy variable. Some operations on fuzzy convex functions are investigated and the convexity of fuzzy extension functions of ordinary convex functions is checked. Moreover, two fuzzy-valued inequalities have been proved by using this fuzzy convex function theory.

Keywords: Compact normal convex fuzzy set, Fuzzy convex region, Fuzzy number, Fuzzy convex function, Fuzzy-valued inequality.

1. Preliminaries

Throughout this paper, we shall denote by \mathbf{R} the set of all real numbers, by \mathbf{R}^+ the set of all positive real numbers and by \mathbf{R}^- the set of all negative real numbers. If $\tilde{\mathbf{a}}$ is a fuzzy set on \mathbf{R}^n , $\tilde{\mathbf{a}}(\mathbf{x})$ will denote the grade of membership of \mathbf{x} in $\tilde{\mathbf{a}}$, $S(\tilde{\mathbf{a}})$ the support of $\tilde{\mathbf{a}}$ and for each $\mathbf{r} \in]0,1]$ $[\tilde{\mathbf{a}}]_r$ the r-level set of $\tilde{\mathbf{a}}$: $[\tilde{\mathbf{a}}]_r = \{\mathbf{x} \in \mathbf{R}^n \colon \tilde{\mathbf{a}}(\mathbf{x}) \geqslant r\}$. If $\tilde{\mathbf{a}}$, $\tilde{\mathbf{b}}$ are two fuzzy sets on \mathbf{R}^n and λ a real number, as special cases of Zadeh's extension principle [14] we define $\tilde{\mathbf{a}} + \tilde{\mathbf{b}}$ and $\lambda \tilde{\mathbf{a}}$ as

$$(\tilde{a} + \tilde{b})(x) = \sup_{y+z=x} \tilde{a}(y) \wedge \tilde{b}(z) \text{ and } (\lambda \tilde{a})(x) = \begin{cases} \tilde{a}(\frac{1}{\lambda}x), & \text{if } \lambda \neq 0, \\ \tilde{\theta}_{a}(x), & \text{if } \lambda = 0 \end{cases}$$

respectively, where θ is the origin of R^n , $a = \sup \{ \widetilde{a}(x) : x \in R^n \}$ and $\widetilde{\theta}_a$ is the fuzzy set defined by

$$\widetilde{\theta}_{a}(x) = \begin{cases} a, & \text{if } x = \theta, \\ 0, & \text{if } x \neq \theta. \end{cases}$$

It is well known (see Nguyen's theory [9]) that for each re]0,1] we have

$$[\widetilde{a} + \widetilde{b}]_r = [\widetilde{a}]_r + [\widetilde{b}]_r \quad \text{and} \quad [\lambda \widetilde{a}]_r = \lambda [\widetilde{a}]_r \,, \qquad (1.1)$$
 where
$$[\widetilde{a}]_r + [\widetilde{b}]_r = \{x + y : x \in [\widetilde{a}]_r, y \in [\widetilde{b}]_r \} \quad \text{and} \quad \lambda [\widetilde{a}]_r = \{\lambda x : x \in [\widetilde{a}]_r \} \,.$$

Let \tilde{a} be a fuzzy set on \mathbb{R}^n . Following Zadeh [13] and Weiss [12] we shall call \tilde{a} a compact normal convex fuzzy set if for each $r \in [0,1]$ [\tilde{a}]_r is a non-empty compact convex subset of \mathbb{R}^n .

We shall denote by $\widetilde{\mathbf{R}}^n$ the family of all compact normal convex fuzzy sets on \mathbf{R}^n and, for each non-empty ordinary convex subset $\mathbf{C} \subset \mathbf{R}^n$, by $\widetilde{\mathbf{C}}$ the family of all compact normal convex fuzzy sets with supports contained in $\mathbf{C} \colon \widetilde{\mathbf{C}} = \{\widetilde{\mathbf{a}} \in \widetilde{\mathbf{R}}^n \colon S(\widetilde{\mathbf{a}}) \subset \mathbf{C}\}$.

Definition 1.1. Let C be a non-empty ordinary convex subset of \mathbb{R}^n . A non-empty subset \underline{D} of \widetilde{C} is called a fuzzy convex region on C if and only if for all $\widetilde{a},\widetilde{b}\in\underline{D}$ and $0<\lambda<1$ we have $\lambda\widetilde{a}+(1-\lambda)\widetilde{b}\in\underline{D}$.

Note that every singleton of \mathbb{C} can also be regarded as an element of $\widetilde{\mathbb{C}}$, so that each non-empty ordinary convex subset of \mathbb{C} is a fuzzy convex region on \mathbb{C} . Further note that, for a fuzzy set $\widetilde{a} \in \widetilde{\mathbb{R}}^{n}$, $\widetilde{a} \in \widetilde{\mathbb{C}}$ if and only if $[\widetilde{a}]_{r} \subset \mathbb{C}$ for all $r \in]0,1]$, thus it follows from (1.1) that for any $\widetilde{a},\widetilde{b} \in \widetilde{\mathbb{C}}$ and $0<\lambda<1$ we have $\lambda\widetilde{a}+(1-\lambda)\widetilde{b} \in \widetilde{\mathbb{C}}$, hence $\widetilde{\mathbb{C}}$ itself is a fuzzy convex region on \mathbb{C} .

Now let us recall some knowledge about fuzzy numbers. We shall only consider the class of all compact normal convex fuzzy numbers. Namely, a fuzzy set \tilde{a} on R is called a fuzzy number if and only if for every $r \in [0,1]$ $[\tilde{a}]_r$ is a non-empty bounded closed interval. Thus, in our

case, \widetilde{R} is the set of all fuzzy numbers, \widetilde{R}^+ (resp. \widetilde{R}^-) is the set of all positive (resp. negative) fuzzy numbers.

For the arithmetic operations on $\widetilde{\mathbf{R}}$ we shall follow those of [1,2,7 and 8], namely, for $\widetilde{\mathbf{a}},\widetilde{\mathbf{b}}\in\widetilde{\mathbf{R}}$ we have

$$(\tilde{a} + \tilde{b})(x) = \sup \{ \tilde{a}(y) \wedge \tilde{b}(z) : y \in S(\tilde{a}), z \in S(\tilde{b}), y + z = x \},$$

$$(\tilde{a} - \tilde{b})(x) = \sup{\tilde{a}(y) \wedge \tilde{b}(z) : y \in S(\tilde{a}), z \in S(\tilde{b}), y - z = x}$$

$$(\tilde{a} \cdot \tilde{b})(x) = \sup \{\tilde{a}(y) \wedge \tilde{b}(z) : y \in S(\tilde{a}), z \in S(\tilde{b}), y \cdot z = x\},$$

and if $0 \in S(\tilde{b})$,

$$(\widetilde{a}/\widetilde{b})(x) = \sup \{\widetilde{a}(y) \wedge \widetilde{b}(z) : y \in S(\widetilde{a}), z \in S(\widetilde{b}), \forall /z = x \},$$
 where we admit $\sup \phi = 0$ for the empty set ϕ .

It is known that both addition and multiplication are associative and commutative. Furthermore, one can easily check that for any $\tilde{a}, \tilde{b} \in \widetilde{R}$ and $\lambda \in R$ we have

$$\lambda(\tilde{a} + \tilde{b}) = \lambda \tilde{a} + \lambda \tilde{b}. \tag{1.2}$$

and for any $\tilde{a} \in \tilde{R}$, if both $d, \theta \in R^+$ or both $d, \theta \in R^-$, we have

$$(\alpha + \beta) \hat{a} = \alpha \hat{a} + \beta \hat{a} . \qquad (1.3)$$

We shall also use the following proposition which was given by Dubois and Prade [1,2]:

Proposition 1.1. Provided that \tilde{a} is either a positive or a negative fuzzy number and that \tilde{b} and \tilde{c} are together positive or negative fuzzy numbers, then

$$\tilde{a} \cdot (\tilde{b} + \tilde{c}) = \tilde{a} \cdot \tilde{b} + \tilde{a} \cdot \tilde{c}$$
.

In order to define fuzzy convex functions, we have to use an inequality relation between fuzzy numbers. The following definition is very popular (see, for examples, [3-7] and [10]):

Definition 1.2. Let $\tilde{a}, \tilde{b} \in \tilde{R}$. Then $\tilde{a} \leq \tilde{b}$, or write $\tilde{b} \geqslant \tilde{a}$, if and only if for all $r \in]0,1]$ we have $\inf[\tilde{a}]_r \leq \inf[\tilde{b}]_r$ and $\sup[\tilde{a}]_r \leq \sup[\tilde{b}]_r$.

For the properties of \leq , we give the following proposition which will be used in the sequel.

Proposition 1.2. Let $\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d} \in \tilde{R}$ and $\lambda \in R$.

- (1). If $\tilde{a} \leq \tilde{b}$ and $\tilde{b} \leq \tilde{c}$, then $\tilde{a} \leq \tilde{c}$.
- (2). If $\tilde{a} \leq \tilde{b}$ and $\tilde{c} \leq \tilde{d}$, then $\tilde{a} + \tilde{c} \leq \tilde{b} + \tilde{d}$.
- (3). If $\tilde{a} \leq \tilde{b}$, then for $\lambda \geq 0$ we have $\lambda \tilde{a} \leq \lambda \tilde{b}$ and for $\lambda \leq 0$ $\lambda \tilde{a} \geq \lambda \tilde{b}$.
- (4). If $\widetilde{a} \leq \widetilde{b}$ and $\widetilde{a}, \widetilde{b} \in \widetilde{R}^+ \cup \widetilde{R}^-$, then for $\widetilde{c} \in \widetilde{R}^+$ we have $\widetilde{c} \cdot \widetilde{a} \leq \widetilde{c} \cdot \widetilde{b}$ and for $\widetilde{c} \in \widetilde{R}^ \widetilde{c} \cdot \widetilde{a} \geq \widetilde{c} \cdot \widetilde{b}$.

Finally we conclude this preliminary section with a definition:

Definition 1.3. Let $\underline{\mathbb{E}}$ be a subset of $\widetilde{\mathbf{R}}$. A mapping f from $\underline{\mathbb{E}}$ to $\widetilde{\mathbf{R}}$ is said to be non-decreasing on $\underline{\mathbb{E}}$ if and only if for all $\widetilde{\mathbf{a}}, \widetilde{\mathbf{b}} \in \underline{\mathbb{E}}$ such that $\widetilde{\mathbf{a}} \lesssim \widetilde{\mathbf{b}}$ we have $f(\widetilde{\mathbf{a}}) \lesssim f(\widetilde{\mathbf{b}})$.

2. Fuzzy convex functions

Throughout this section, $\underline{\mathbb{D}}$ will always denote a fuzzy convex region on \mathbf{R}^n .

Definition 2.1. A mapping f from \mathbb{D} to $\widetilde{\mathbf{R}}$ is called a fuzzy convex function, or say that f is F-convex on \mathbb{D} , if and only if for all $\widetilde{\mathbf{a}}$, $\widetilde{\mathbf{b}}$ $\in \mathbb{D}$ and $0 < \lambda < 1$ we have

$$f(\lambda \tilde{a} + (1-\lambda)\tilde{b}) \leq \lambda f(\tilde{a}) + (1-\lambda)f(\tilde{b}).$$
 (2.1)

Definition 2.2. A mapping f from \mathbb{D} to $\widetilde{\mathbf{R}}$ is called a fuzzy concave function,or say that f is F-concave on \mathbb{D} , if and only if for all $\widetilde{\mathbf{a}}$, $\widetilde{\mathbf{b}}$ $\in \mathbb{D}$ and $0<\lambda<1$ the inverse inequality of (2.1) holds.

It is easy to see from (1.2) and Proposition 1.2 (3) that a mapping f from $\mathbb D$ to $\widetilde{\mathbf R}$ is F-concave iff -f is F-convex. Thus in the following we shall mainly discuss fuzzy convex functions.

Let C be a non-empty ordinary convex subset of R^n and f be an ordinary convex function on C. Since C is a special fuzzy convex region and R is a set of special fuzzy numbers, of course $f:C \rightarrow R$ is a special fuzzy convex function. Furthermore, Zadeh's extension principle [14] tells us that, for each fuzzy convex region D on C, f can be extended as a mapping from D to the family of all fuzzy sets on R such that for $\widetilde{a} \in D$

$$f(\tilde{a})(t) = \sup_{x \in f^{-1}(t)} \tilde{a}(x) \quad \text{for } t \in \mathbb{R},$$
 (2.2)

and Nguyen [9] tells us that in the case f is continuous on C we have

$$[f(\tilde{a})]_r = f([\tilde{a}]_r)$$
 for $r \in [0,1]$,

and thus, by the compactness and convexity of $[\tilde{a}]_r$, for each $r \in [0,1]$ $[f(\tilde{a})]_r$ is a bounded closed interval, namely the fuzzy extension function defined by (2.2) is in fact a mapping from D to \tilde{R} .

Theorem 2.1. Let C be a non-empty ordinary convex subset of R^n and f be an ordinary convex function on C. If f is continuous on C, then for any fuzzy convex region $D \subset \widetilde{C}$ the fuzzy extension function $f:D \to \widetilde{R}$ defined by (2.2) is a fuzzy convex function.

Proof. Let $\tilde{a}, \tilde{b} \in \mathbb{D}$ and $0 < \lambda < 1$. Since for each $r \in [0,1]$ $[\tilde{a}]_r, [\tilde{b}]_r$ and $[\lambda \tilde{a} + (1-\lambda)\tilde{b}]_r = \lambda [\tilde{a}]_r + (1-\lambda)[\tilde{b}]_r$ are all non-empty compact subset of \mathbf{C} , and since f is continuous, there should exist $x_{\min} \in [\tilde{a}]_r, y_{\min} \in [\tilde{b}]_r$ and $\lambda x^* + (1-\lambda)y^* \in [\lambda \tilde{a} + (1-\lambda)\tilde{b}]_r$ ($x^* \in [\tilde{a}]_r, y^* \in [\tilde{b}]_r$) such that

$$f(x_{\min}) = \inf f(\tilde{l}al_r), \quad f(y_{\min}) = \inf f(\tilde{l}bl_r)$$
 (2.3)

and

$$f(\lambda x^* + (1 - \lambda)y^*) = \sup f([\lambda \tilde{a} + (1 - \lambda)\tilde{b}]_r). \qquad (2.4)$$

Note that we always have

$$f(\lambda x_{\min} + (1-\lambda)y_{\min}) \ge \inf f([\lambda \tilde{a} + (1-\lambda)\tilde{b}]_r),$$
 (2.5)

$$f(x^*) \le \sup f(\tilde{a}_r)$$
 and $f(y^*) \le \sup f(\tilde{b}_r)$, (2.6)

and note that also by applying Nguyen's theory [9] we have

$$\inf f([\widehat{a}]_r) = \inf [f(\widehat{a})]_r, \inf f([\widehat{b}]_r) = \inf [f(\widehat{b})]_r, \qquad (2.7)$$

$$\sup f(\tilde{a}_r) = \sup [f(\tilde{b})]_r, \sup f(\tilde{b}_r) = \sup [f(\tilde{b})]_r, \qquad (2.8)$$

$$\sup f([\lambda \tilde{a} + (1-\lambda)\tilde{b}]_r) = \sup [f(\lambda \tilde{a} + (1-\lambda)\tilde{b})]_r, \qquad (2.9)$$

and

$$\inf f([\lambda \tilde{a} + (1-\lambda)\tilde{b}]_r) = \inf [f(\lambda \tilde{a} + (1-\lambda)\tilde{b})]_r.$$
 (2.10)

Moreover, by the convexity of f we have

$$f(\lambda x_{\min} + (1-\lambda)y_{\min}) \leq \lambda f(x_{\min}) + (1-\lambda)f(y_{\min}), \qquad (2.11)$$

and

$$f(\lambda x^* + (1-\lambda)y^*) \le \lambda f(x^*) + (1-\lambda)f(y^*).$$
 (2.12)

Thus we have by (2.10),(2.5),(2.11),(2.3) and (2.7)

$$\inf [f(\lambda \tilde{a} + (1-\lambda)\tilde{b})]_r \leq \lambda (\inf [f(\tilde{a})]_r) + (1-\lambda) (\inf [f(\tilde{b})]_r), \qquad (2.13)$$

and by (2.9),(2.4),(2.12),(2.6) and (2.8)

$$\sup [f(\lambda \tilde{a} + (1-\lambda)\tilde{b})]_r \leq \lambda (\sup [f(\tilde{a})]_r) + (1-\lambda)(\sup [f(\tilde{b})]_r). \tag{2.14}$$

Furthermore, one can easily check that we have

$$\lambda(\inf[f(\widetilde{a})]_r) + (1-\lambda)(\inf[f(\widetilde{b})]_r) = \inf(\lambda[f(\widetilde{a})]_r + (1-\lambda)[f(\widetilde{b})]_r)$$
$$= \inf[\lambda f(\widetilde{a}) + (1-\lambda)f(\widetilde{b})]_r, \quad (2.15)$$

and

$$\lambda(\sup[f(\widetilde{a})]_r) + (1-\lambda)(\sup[f(\widetilde{b})]_r) = \sup[\lambda[f(\widetilde{a})]_r + (1-\lambda)[f(\widetilde{b})]_r)$$

$$= \sup[\lambda f(\widetilde{a}) + (1-\lambda)f(\widetilde{b})]_r. \quad (2.16)$$

Consequently we have by (2.13), (2.14), (2.15) and (2.16)

$$\inf[f(\lambda \tilde{a} + (1-\lambda)\tilde{b})]_r \leq \inf[\lambda f(\tilde{a}) + (1-\lambda)f(\tilde{b})]_r$$

and

$$\sup[f(\lambda \tilde{a} + (1-\lambda)\tilde{b})]_{r} \leq \sup[\lambda f(\tilde{a}) + (1-\lambda)f(\tilde{b})]_{r},$$

namely we have

$$f(\lambda \tilde{a} + (1-\lambda)\tilde{b}) \leq \lambda f(\tilde{a}) + (1-\lambda)f(\tilde{b}).$$

This completes the proof.

Now let us discuss some fundamental operations on fuzzy convex functions.

Theorem 2.2. If both f and g are F-convex on \mathbb{D} , then so are f+g and λf ($\lambda \ge 0$). Namely the family of all fuzzy convex functions on \mathbb{D} is closed under positive linear combinations.

Proof. Immediate from (1.2) and Proposition 1.2 (2) and (3).

Theorem 2.3. If f is F-convex on $\mathbb D$ and if for all $\widetilde{a} \in \mathbb D$ we have $f(\widetilde{a}) \in \widetilde{R}^+$ or for all $\widetilde{a} \in \mathbb D$ we have $f(\widetilde{a}) \in \widetilde{R}^-$, then for any $\widetilde{\lambda} \in \widetilde{R}^+$, $\widetilde{\lambda} \cdot f$ is a fuzzy convex function on $\mathbb D$.

Proof. Immediate from Proposition 1.1 and Proposition 1.2 (4).

Theorem 2.4. If f is a fuzzy convex function from \mathbb{D} to a fuzzy convex region $\mathbb{E} \subset \widetilde{\mathbb{R}}$, then for any a non-decreasing fuzzy convex function g on \mathbb{E} , the compound function $g(f(\widetilde{x}))$ is F-convex on \mathbb{D} .

Proof. Let $\tilde{a}, \tilde{b} \in D$ and $0 < \lambda < 1$. Since it is known that we have $f(\lambda \tilde{a} + (1-\lambda)\tilde{b}) \leq \lambda f(\tilde{a}) + (1-\lambda)f(\tilde{b}),$

and since g is non-decreasing, of course we have

$$g(f(\lambda \tilde{a} + (1-\lambda)\tilde{b})) \leq g(\lambda f(\tilde{a}) + (1-\lambda)f(\tilde{b})),$$

and hence by the F-convexity of g we can get

$$g(f(\lambda \tilde{a} + (1-\lambda)\tilde{b}) \leq \lambda g(f(\tilde{a})) + (1-\lambda)g(f(\tilde{b})).$$

This completes the proof.

In order to obtain some more operations on fuzzy convex functions we need the following lemma:

Lemma 2.5. Let I be a non-empty interval of R and f be an ordinary non-decreasing function on I. If f is continuous on I, then for any

subset \mathbb{E} of $\widetilde{\mathbf{I}}$, the fuzzy extension function $f: \mathbb{E} \to \widetilde{\mathbf{R}}$ defined by (2.2) is also non-decreasing.

Proof. Straightforward.

Theorem 2.6. Let I be a non-empty interval of R, and let f be a fuzzy convex function from D to \widetilde{I} . Then for any a non-decreasing ordinary convex function g on I, the compound function $g(f(\widetilde{x}))$ is also a fuzzy convex function on D.

Proof. Immediate from Lemma 2.5, Theorem 2.1 and Theorem 2.4.

Corollary 2.7. If f is F-convex on \mathbb{D} , then so is $e^{f(\widetilde{X})}$.

Corollary 2.8. If f is F-convex and positive on \mathbb{D} , then so is $[f(\widetilde{x})]^p$ for p > 1.

Corollary 2.9. If f is F-concave and positive on \mathbb{D} , then 1/f(x) is F-convex on \mathbb{D} .

Proof. It is known that -f is F-convex on $\mathbb D$ and for all $\widetilde a \in \mathbb D$ we have $f(\widetilde a) \in \widetilde R^-$. Further we know that g(t) = -1/t is an ordinary increasing convex function on R^- . Hence by virtue of Theorem 2.6 the compound function g(f(x)) = -1/(-f(x)) = 1/f(x) is F-convex on $\mathbb D$.

Finally we conclude our this fuzzy convex function theory with the following fuzzy extension of Jenson's inequality which will be useful in the theory of fuzzy-valued inequalities.

Theorem 2.10. Let f be a mapping from \mathbb{D} to $\widetilde{\mathbf{R}}$. Then f is F-convex on \mathbb{D} if and only if for any $\widetilde{\mathbf{a}}_1, \dots, \widetilde{\mathbf{a}}_m \in \mathbb{D}$

$$\texttt{f}(\lambda_1 \widetilde{\texttt{a}}_1 + \cdots + \lambda_m \widetilde{\texttt{a}}_m) \lesssim \lambda_1 \texttt{f}(\widetilde{\texttt{a}}_1) + \cdots + \lambda_m \texttt{f}(\widetilde{\texttt{a}}_m)$$

whenever $\lambda_1 \ge 0, \dots, \lambda_m \ge 0, \lambda_1 + \dots + \lambda_m = 1$.

Proof. Analogous to the proof of Jenson's inequality in the non-fuzzy case.

3. Applications to fuzzy-valued inequalities

In paper [15], we have established a rudimentary theory of fuzzy-valued inequalities and have extended four classical inequalities to fuzzy-valued case. In this section we shall now use our fuzzy convex function theory to prove two more fuzzy-valued inequalities.

Inequality 1. Let $\lambda_{i,j}$ ($i,j=1,\dots,n$) be n^2 positive real numbers satisfying $\lambda_{i,1}+\dots+\lambda_{i,n}=1$ and $\lambda_{1,j}+\dots+\lambda_{i,n}=1$ ($i,j=1,\dots,n$) and let $\widetilde{a}_1,\dots,\widetilde{a}_n\in\widetilde{R}^+$. If $\widetilde{b}_i=\lambda_{i,1}\widetilde{a}_1+\dots+\lambda_{i,n}\widetilde{a}_n$ ($i=1,\dots,n$), then we have $\widetilde{b}_1,\dots,\widetilde{b}_n\geq\widetilde{a}_1,\dots,\widetilde{a}_n$ (3.1)

Proof. Theorem 2.1 tells us that $f(\tilde{x}) = -\ln \tilde{x}$ is F-convex on \tilde{R}^+ . Hence for $i = 1, \dots, n$ we have by Theorem 2.10

 $\ln \widetilde{b}_{i} = \ln(\lambda_{i} + \widetilde{a}_{1} + \cdots + \lambda_{i} + \widetilde{a}_{n}) \geq \lambda_{i} + \ln \widetilde{a}_{1} + \cdots + \lambda_{i} + \ln \widetilde{a}_{n}$

So that by (1.3) we have

$$\ln \widetilde{b}_1 + \cdots + \ln \widetilde{b}_n \geqslant \ln \widetilde{a}_1 + \cdots + \ln \widetilde{a}_n$$
 (3.2)

Since lnt is strictly increasing on R^+ , so one can easily check that for any $\widetilde{a},\widetilde{b}\in\widetilde{R^+}$ we have

$$\ln \tilde{a} + \ln \tilde{b} = \ln (\tilde{a} \cdot \tilde{b}) \tag{3.3}$$

and that $\ln \tilde{a} \leq \ln \tilde{b}$ iff $\tilde{a} \leq \tilde{b}$. Therefore (3.2) is equivalent to (3.1).

Inequality 2. If $\tilde{a}_1, \dots, \tilde{a}_n \in \widetilde{\mathbf{I}}$ ($\mathbf{I} = \mathbb{J}0, 1\mathbb{I}$), then for any $\lambda_1, \dots, \lambda_n \in \mathbb{R}^+$ such that $\lambda_1 + \dots + \lambda_n = 1$ we have

$$\frac{\lambda_1}{1+\widetilde{a}_1}+\cdots+\frac{\lambda_n}{1+\widetilde{a}_n} \lesssim \frac{1}{1+\widetilde{a}_1^{\lambda_1}\cdots\widetilde{a}_n^{\lambda_n}}$$
 (3.4)

Proof. Let $\widetilde{b}_1 = \ln \widetilde{a}_1$. Then we have $\widetilde{b}_1 \in \widetilde{R}^-$. Further it is easy to check

that $\tilde{a}_i = e^{\tilde{b}_i}$ ($i=1,\cdots,n$). Since $f(t) = -1/(1+e^t)$ is convex on R^- , it follows at once from Theorem 2.1 and Theorem 2.10 that we have

$$\frac{\lambda_1}{1+e^{\widetilde{b}_1}} + \cdots + \frac{\lambda_n}{1+e^{\widetilde{b}_n}} \lesssim \frac{1}{1+e^{\lambda_1 \widetilde{b}_1 + \cdots + \lambda_n \widetilde{b}_n}}.$$
 (3.5)

Note that for $\tilde{a}, \tilde{b} \in \tilde{R}$ and $\lambda \in R$ we also have $e^{\tilde{a}+\tilde{b}} = e^{\tilde{a}} \cdot e^{\tilde{b}}$ and $e^{\lambda \tilde{a}} = (e^{\tilde{a}})^{\lambda}$ (see [2]). Hence (3.5) is equivalent to (3.4).

References

- [1] D.Dubois and H.Prade, Fuzzy real algebra: Some results, Fuzzy sets and Systems, 4(1979) 327-348.
- [2] D.Dubois and H.Prade, Fuzzy Sets and Systems: Theory and Applications, (Academic Press, New York, 1980).
- [3] D.Dubois and H.Prade, Comment on tolerance analysis using fuzzy sets "and" a procedure for multiple aspect decision making, Int. J. Systems Sci., 9(1978) 357-348.
- [4] A.N.S.Freeling, Fuzzy sets and decision analysis, IEEE Trans. Systems, Man Cybernet. 10(1980) 341-354.
- [5] R.Goetschel and W.Voxman, Eigen fuzzy number sets, Fuzzy Sets and Systems, 16(1985) 75-85.
- [6] O.Kaleva and S.Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 14(1984) 215 229.
- [7] M.Mizumoto and K.Tanaka, Some properties of fuzzy numbers, in: M.M. Gupta, R.K.Ragade and R.R.Yager, Eds., Advances in Fuzzy Set Theory and Applications (North-Holland, Amsterdam, 1979) 153-164.
- [8] M.Mizumoto and K.Tanaka, The four operations of arithmetic on fuzzy numbers, Systems Comput. Controls, 5(1976) 73 81.
- [9] H.T.Nguyen, A note on the extension principle for fuzzy sets, J. Math. Anal. Appl. 64(1978) 369-380.
- [10] J.Ramík and J.Římánek, Inequality relation between fuzzy numbers and its use in fuzzy optimization, Fuzzy Sets and Systems, 16(1985) 123 138.
- [11] R.T.Rockafellar, Convex Analysis (Princeton University Press, second printing, 1972).
- [12] M.D.Weiss, Fixed points, separation and induced topologies for fuzzy sets, J. Math. Anal. Appl. 50(1975) 142-150.
- [13] L.A. Zadeh, Fuzzy sets, Information and Control, 8(1965) 338 353.
- [14] L.A.Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Part 1,2 and 3, Inform. Sci. 8, 199 249; 8, 301 357; 9, 43 80(1975).
- [15] Zhou Feiyue, On fuzzy-valued inequalities, Fuzzy Sets and Systems, To appear.