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This paper intends to establish a rudimentary convéxity
theory for the fuzzy-valued functions of a fuzzy variable.
Some operations on fuzzy convex functions are investigated
and the convexity of fuzzy extension functions of ordinary
convex functions is checked. Moreover, two fuzzy-valued

inequalities have been proved by using this fuzzy convex

function theory.
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1. Preliminaries

Throughout this paper, we shall denote by R the set of all real
numbers,by R the set of all positive real numbers and by R™ the set
of all negative real numbers. If & is a fuzzy set on Rn, g(x) will
denote the grade of membership of x in &, S(3) the sﬁpport of 3 and
for each r €130,1] [8], the r-level set of &: ['é]r={xeRn: g(x)zrt.

If ?a',g are two fuzzy sets on R? and A a real number, as special

cases of Zadeh's extension principle [14] we define §+D and AF as

N 5(kx), 1f A #0,
(5+5)(x)= sup &(y)AD(z) eand (aa>_(x)={

y+z=x & (x), ifA=0



respectively, where @ is the origin of Rn_, a=sup{'5(x):xe Rnl}” and 58

is the fuzzy set defined by

%(x) ={

It is well known ( see Nguyen's theory [91 ) that for each reJ0,1]

a, if X= 9,

0, if x#80.

we have
[& +3]r=‘[5]r +[b]. and [A3lr= ALE),, (1.1)

where [F]l,+ [Dlr= {x+yix € [(qlp,y e [glr} and A[&]p = '{Ax:xe [81r} .

Let & be a fuzzy set on R®. Following Zadeh [13] and Weiss [12] we
shall call 3 a compact normal convex fuzzy set if for each re ]0,1)
[51, is a non-empty compact convex subset of R". ‘

We shall denote by Eﬁ the family of all compact normal convex fuzzy
sets on R and, for each non-empty ordinary convex subset C&< Rn, by
C the family of all compact normal convex fuzzy sets with supports

contained in C: € ={3eR”: s(za)cC}.

Definition 1.1, Let C be a non-empty ordinary convex subset of R". A
non-empty subset D of C is called a fuzzy convex region on C if and

only if for all &,b€ D and 0<A<1 we have AZ + (1-A)beD.

Note that every singleton 6f C can also» be regarc;ed as an element
of 5, so that each non-empty ordinary convex subset of € is a fuzzy
convex region on €. Further note that, for a fuzzy set "a"e;{ﬁ,‘ zeC
if and only if [&],CC for all r €J0,1], thus it follows from (1.1)
that for any 3,beC and 0<A <1 we have AT+ (1—?;)“566, hence C itself
is a fuzzy convex region on C. |

Now let us recall some knowledge about fuzzy numbers. We shall only
consider the class of all compact normal convex fuzzy numbers. Namely,
a fuzzy set & on R is called a fuzzy number if and only if for every

re J10,1] [Elr is a non-empty bounded closed interval. Thus, in our



case, R is the set of all fuzzy numbers, Rt ( resp. R~ ) is the set
of all positive ( resp. negative ) fuzzy numbers.

For the arithmetic operations on R we shall follow those of [1,2,7
and 8], namely, for &,b éﬁ we have |

(Z+B)(x) = sup{é(y)l\fi(z):y.e S(&),zes(b),y+z=x},

(8-1)(x) = sup{a(y)Ab(z):y e S(8),ze S(B),y ~z=x},

(3 +B)(x)= sup{a(y)Ab(z):y € S(&),z e S(B), y-z =x},
and if 0€ S(b),

(3/% )(x) = sup{a(y)Ab(z):y e S(7),zeS(b),¥/z =x},
where we admit sup$=0 for the empty set ¢.

It is known that both addition and multiplication .are associative
and commutative. Furthermore, one can easily check that for any 3,b €R
and A€R we have ‘

AME+D)=2a+Ab. : (1.2)

and for any ﬁeﬁ, if both o,8€ R* or both o/,8 € R™, we have
(d+8 )T =oE+ @3 . | (1.3)
We shall also use the following proposition which was given by

Dubois and Prade [1,2]:

Proposition 1.1. Provided that 3 is either a positive or a negative
fuzzy number and that b and T are together positive or negative fuzzy
numbers, then

Fe(b+ &) =8.b+ 3F.C.

In order to define fuzzy convex functions, we have to use an
inequality relation between fuzzy numbers. The following definition

is very popular ( see, for examples, [3—7] and [10] ):

Definition 1.2, Let 3,b €R. Then <D, or write E,z‘é, if and only if

for all re JO,1] we have inf['é]l;s inf[bl, and sup‘[5]r'$ sup'[BJr.



For the properties of <, we give the following proposition which

will be used in the sequel.

t

Proposition 1.2. Let 5,b,5,d€R and A€R.,
(1). If 3<b and 5<¢C, then d<t.

(2). If 5<b and ©<d, then a+3<b+d.

(3). If &<

o'l
o

, then for A2 0 we have AE<Ab and for A<0 A& 2Ab.

(4). 1f 5% and 5,5 €R'UR", then for Te R* we have S-5<&.D and

!

~

for TeR C+32C-

o

Finally we conclude this preliminary section with a definition:

Definition 1.3. Let E be a subset of R. A mapping f from E to R is
sald to be non-decreasing on E if and only if for all 'é,BEE_ such that

Z< b we have f(3)=<f(b).

2. Puzzy convex functions

Throughout this section, D will always denote a fuzzy convex region

on R%,

Definition 2.1. A mapping f from D to R is called a fuzzy convex

function, or say that f is F-convex on D, if and only if for all 3,b

€ D and O<KA<1 we have

f(AT+ (1-2)B) € A£(8) + (1-A)£(B). (2.1)

Definition 2.,2. A mapping f from D to R is called a fuzzy concave
function,or say that f is F-concave on D, if and only if for all §,b

€ D and 0<A<1 the inverse inequality of (2.1) holds.

1t is easy to see from (1.2) and Proposition 1.2 (3) that a mapping
f from D to R is F-concave iff -f is F-convex. Thus in the following .

we shall mainly discuss fuzzy convex functions.



Let C be a non-empty ordinary convex subset of R® and f be an
ordinary convex function on C. Since C is a special fuzzy convex region
and R is 2 set of special fuzzy numbers, of course f:C—+R is a special
fuzzy convex function. Furthermore, Zadeh's extension principle [14]
tells us that, for each fuzzy convex region D on C, f can be extended
as a mapping from D to the family of all fuzzy sets on R such that
for 2€D

£f(a)(t) = sup 3F(x) for teR, , (2.2)
xef=1(t) «

and Nguyen [91] tells us that in the case f is continuous on C we

El

have :

(£(8))r=1£([3]l;) for re 0,17,
and thus, by the compactness and convexity of [&],, for each re J0,1]
[£(2)]; is a bounded closed interval, namely the fuzzy extension

function defined by (2.2) is in fact a mapping from D to R.

Theorem 2.1, Let C be a non-empty ordinary convex subset of R” and f
be an ordinary convex function on C. If f is continuous on C, then
for any fuzzy convex region p_c:?f the fuzzy extension function f:Q—»ﬁ

defined by (2.2) is a fuzzy convex function.

Proof. Let 3,b€ D and 0<A<1. Since for each re 10,11 [&Jp,[(Blr and
A&+ (1-M)blr= A[]p + (1-2)[b]r are all non-empty compact subset of
C, and since f is continuous, there should ek’ist Xmin€ (&lr, Yinin € LBIp
and Ax*+ (1-A)y*e [(A3+(1-20)b1, ( x*e[TIr, y*Ae [Blr ) such that |
f(xpin) =inf £(L81.), f£(ypin) = inf £(IbIy) (2.3)
and _ '
fAx*+ (1=0)y*) = sup £(A&+(1-2)BIL) . ‘ (2.4)
Note that we always have

£(Axpin + (1=\yimin) = inf £([AZ+(1-0)B1p), (2.5)



£(x*) <sup £([d]1.) and £(y*)=<sup £([bl,),
and note that also by applying Nguyen's theory [ 9] we have
inf £([&1p) = inf [£(8)1p, inf £((bl.) =inf [£(B)1,,
sup £([&Jp) = sup [£(B)]yr, sup £([BIp) =sup [£(B)],,
sup £([23 + (1-2)BI1.) =sup [£ (A3 + (1-0)B)] L,
and
inf £([A&+ (1-M)bl.) =inf [fF(AF +(1-2)B)] L .
Moreover, by the convexity of f we have -
f(Axmin + (1=Vypin) < A (xpin) + (1=2) £(ypin) ,
and
F(Ax*+ (1=-2)y*) S A (x*) + (1-A) £(y*).
Thus we have by (2.10),(2.5),(2.11),(2.3) and (2.7)
inf [fAE&+(1-0)B)r S A(Ant [£(&)Tp) +(1=2) (inf [£(B)]r),
and by (2.9),(2.4),(2.12),(2.6) and (2.8)
sup [£(AZ+(1-1)B)] < A(sup [f('é)j )+ (1=2) (sup[£(D)T ) »

Furthermore, one can easily check that we have

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

AMinf [£(8)Ip)+(1-2) (inf [£(B)] ) = inf (ALE(E)] o+ (1-2) [£(B) )

= inf A£(3) + (41-2)£(D)Ip,

and-

(2.15)

A(sup [£(2)I L)+ (1-2) (sup [£(B)I,) = sup()L[f(»é‘)]r+(1-l)[f(g)]r)

= sup [A£(F) +(1-)f(B)] .
Consequently we have by (2.13),(2.14),(2.15) and (2.16)
inf[£(x 8+ (1-2)B)] < inf A£(F) + (1-2)£(B)]
“and
sup [£(1& + (1-0)B)] r< sup[A£(B) + (1-0£(5)] 1,
namely we have
£+ (1-0)B) £A£(7) + (1-0)£(b) .

This completes the proof.

(2.16)



Now let us discuss some fundamental operations on fuzzy convex

functions.

Theorem 2.2. If both f and g are F-convex on.D, then so are f +g and
Af ( A=z0 ). Namely the family of all fuzzy convex functions on D is

closed under positive linear combinations.
Proof. Immediate from (1.2) and Proposition 1.2 (2) and (3).

Theorem 2.3. If f is F-convex on D and if for all €D we have f(3)
€ R* or for all €D we have £(&)€ R, then for any TeR*, X.f is a

fuzzy convex function on D.

Proof. Immediate from Proposition 1.1 and Proposition 1.2 (4).

Theorem 2.4. 1f f is a fuzzy convex function from D to a fuzzy convex
region ,E_Cﬁ, then for any a non-decreasing fuzzy convex function g on

E, the compound function g(f(%X)) is F-convex on D.

Proof. Let 3,5€D and 0<A<1. Since it is known that we have
f(AF + (1-2)b) £ A£(F) + (1-A)£(B),
and since g is non-decreasing, of course we have
glf(AF + (1-1)B)) £ e(A£(&) + (1-1)£(D)),
and hence by the F-convexity of g we can get
g(£(AF + (1=2)) < Ag(£(F)) + (1= g(£(B)).
This completes the proof.

In order to obtain some more operations on fuzzy convex functions

we need the following lemma:

Lemma 2.5. Let I be a non-empty interval of R and f be an ordinary

non-decreasing function on I. If f is continuous-on I, then for any. -



subset E of I, the fuzzy extension function f:@—»ﬁ defined by (2.2)

is also non-decreasing.

Proof. Straightforward.

Theorem 2.6. Let I be a non-empty interval of R,and let f be a fuzzy
convex function from D to I. Then for any a non-decr‘easing ordinary

convex function g on I, the compound function g(f(X))is also a fuzzy

convex function on D.
Proof. Immediate from Lemma 2.5, Theorem 2.1 and Theorem 2.4,
Corollary 2.7. If f is F-convex on D, then so is ef(x).

Corollary 2.8. If f is F-convex and positive on D,then so is [f(%)]P

for p>1.

Corollary 2.9. If f is F-concave and positive on D, then 1/f(x) is

F-convex on D,

Proof. It is known that -f is F-convex on D and for all @€ D we have
f(é)éﬁ_. Further we know that g(t) = "1/1: is an ordinary increasing
convex function on R™. Hence by virtue of Theorem 2.6 the compound

function g(f(x)) =—1/(_f(x)> = Vr(x) is F-convex on D.

Finally we conclude our this fuzzy convex function theory with the
following fuzzy extension of Jenson's inequality which will be useful

in the theory of fuzzy-valued inequalities.

Theorem 2.10. Let f be a mapping from D to R.Then f is F-convex on D
if and only if for any &4,+++,3p€D

whenever X1 0,***,An2 0, Aq+ecetdpn=1.



Proof. Analogous to the proof of Jenson's inequality in the non-fuzzy

case.

3. Applications to fuzzy-valued inequalities

In paper [15], we have established a rudimentary theory of fuzzy-
valued inequalities and have extended four classical inequalities to
fuzzy-valued case. In this section we shall now use our fuzzy convex

function theory to prove two more fuzzy-valued inequalities.

Inequality 1. Let )\ij (i,j=1,+++yn ) be n< positive real numbers
satisfying 7\11+""+7\in=1 and 7\1j+"‘+7\nj=1 (i,j=1,¢++,n )and let
81y ++,8n€ R*. If Bj= A3981+++hin8y ( i=1,+++,n ), then we have

E100.olgn’>_,§1000005n. (301)

Proof. Theorem 2.1 tells us that f(¥X)= -1nX is F-convex on R*. Hence
for i=1,++e,n we have by Theorém 2.16 |
1nbi = 1n( X481+« ++Nindn) 2 Aj41ndq+ e e+ Aipnlndy.

So that by (1.3) we have |

1nbq+ e o+1nbpy 2 Inq+ « o o+1n3y . (3.2)
Since lnt is strictly increasing on RY, so one can easily check that -
for any ,b € R* we have |

Ing + 1nb = 1n(F.b) (3.3)

and that In3<1nb ift F<b. Therefore (3.2) is equivalent to (3.1).

Inequality 2. If 51,---,§nef ( I=30,1L ), then for any A, s-«,An €
R* such that Aq+..etdp=1 we have

A1

L < 1
A+ay

An
T+en 1+517\1 .o ..gnln ‘ (3.4)

+ ¢ 0 o

Proof. Let bj = 1ndj. Then we have by € R™. Further it is easy to check



~

that & = ePi ( i=1,+ee,n ), Since f(t) = -1/(1+et) is convex on R7, it
follows at once from Theorem 2,1 and Theorem 2.10 that we have

MEq+e e s+hnby

~ . (3 05)
1+e

~ ~

Note that for &,5€¢R and A€R we also have e®*P=e3eel and oM@ -

(eg)l( see [2j ). Hence (3.5) is equivalent to (3.4).
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