Transformation Theorems for Fuzzy Pan-integrals Li Xiaoqi

Zhangjiakou Staff and Workers University Zhangjiakou, Hebei, China

Abstract

In papers [1] and [2] we gave the definition of fuzzy pan-integral, discussed its elementary properties and proved some convergence theorems of sequence of fuzzy pan-integrals. In this paper, some transformation theorems for fuzzy pan-integrals are proved. These results reveal the relations between the fuzzy pan-integrals on fuzzy sets and the pan-integrals on classical sets.

§ 1. Definition of Fuzzy Pan-integral

Throughout this paper, let X be a nonempty set and $\mathfrak{F}(X) = \{A: A: X \longrightarrow A: X$ [0, 1]} be the class of all fuzzy subsets of X. Also we adopt the conventions: $0.\infty=0$, $\inf_{t\in\emptyset}\{a_t; a_t\in[0,\infty]\}=\infty$.

[1]
Definition 1.1 A nemempty subset \$\mathfrak{H} \columbforf \mathfrak{H}(X)^\frac{1}{16} \called \frac{1}{16} \frac{1}{ σ-algebra if the following conditions are satisfied:

- (1). Ø, Xe 37;
- (2). if Ae另, then Ace另;

(3). if {An}cJ, then UAneJ.

Definition 1.2 LU Suppose that J is a fuzzy 6-algebra. A function $\mu: \mathcal{F} \longrightarrow \overline{\mathbb{R}}_+$ is called a fuzzy measure, if it satisfies the following conditions:

- (1). $\mu(\emptyset)=0;$
- (2). for any A, $B \in \mathcal{F}$, if $A \subset B$, then $\mu(A) \leq \mu(B)$;
- (3). whenever $\{A_n\}\subset \mathcal{H}$, $A_n\subset A_{n+1}$, $n=1,2,\cdots$, then $\mu(UA_n)=\lim_{n\to\infty}(A_n)$;
- (4). whenever $\{A_n\}\subset\mathcal{F}$, $A_n\supseteq A_{n+1}$, $n=1,2,\cdots$, and there exists n_0 , such that $\mu(A_n) < \infty$, then $\mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n)$.

 Definition 1.3 [1] A mapping f: $X \to (-\infty, \infty)$ is called a measurable

function on \mathcal{Z} , if for any $\alpha \in [-\infty, \infty]$, we have $F_{\alpha} = \{x: f(x) \geqslant \alpha\} \in \mathcal{Z}$.

Denote the set of all measurable functions on \mathfrak{Z} by \mathfrak{M} , and write $M^+=\{f: f\in M \text{ and } f\geqslant 0\}.$

Definition 1.4^[1]Let (X, \mathcal{F}) be a fuzzy measurable space, $(\overline{R}_{\bullet, \bigoplus}, \bigcirc)$ be an ordered commutative semi-ring, 3={E: E & 3 and E is a classical set } (It is clear that B is a classical 6-algebra contained in \mathfrak{F}). Then

(1). If I is the unit element of $(\overline{R}_+, \oplus, \odot)$, the extended real-valued function on X:

$$\chi_{E}(x) = \begin{cases} I & \text{if } x \in E \\ 0 & \text{if } x \in E \end{cases}$$

is called the characteristic function of E, where E € B;

(2). The real-valued function s(x):

 $s(x) = \bigoplus_{i=1}^{n} (\alpha_{i} \odot \mathcal{N}_{E_{i}}(x))$ is said to be a simple function on X, if $0 < \alpha_{i} < \infty$, $E_{i} \in \mathcal{B}$, i=1,2,...n, and if $\alpha_i \neq \alpha_j$, $E_i \cap E_j = \emptyset$, $i \neq j$; $\ddot{U}_{E_i} = X$.

We denote the set of all simple functions on X by S.

Definition 1.5 [1] Let $(X, \mathcal{F}_{+}, \mu, \overline{R}_{+}, \oplus, \odot)$ be a fuzzy pan-space, $s(x) = \hat{\mathbf{g}}(\alpha_i \odot \mathcal{X}_{E_i}(x)) \in S$,

 $P_{\underline{A}}(s) = \bigoplus_{i=1}^{n} (\alpha_{i} \odot \mu(\underline{A} \cap E_{1})) .$

When f ∈ M+, the fuzzy pan-integral of f on A with respect to µ is (p) $\int_{\mathbb{R}^{6}} f dy = \sup_{s \in \mathbb{S}^{6}} P_{\mathbb{A}}(s)$, where $s(f) = \{s: s \in \mathbb{S}, 0 \le s \le f\}$. defined by

§ 2. Transformation Theorems for Fuzzy Pan-integrals

Theorem 2.1 [1]. For any given $A \in \mathcal{F}$, if we define $\mu^*(E) = \mu(A \cap E)$ for any E & then u* is a fuzzy measure on B. It is called the fuzzy measure induced by μ and A.

From this theorem and definition 1.5, we can obtain the following result:

Transformation Theorem I. Let $\underline{A} \in \mathcal{F}$, $f \in \underline{\mathbb{M}}^+$, and μ^* be the fuzzy measure defined in Theorem 2.1. Then $(p)\int_{A\cap E} d\mu = (p)\int_{E} d\mu^*$, whenever $E \in \mathcal{B}$. Particularly, $(p) \int_{\mathbb{A}} f d\mu = (p) \int_{\mathbb{X}} f d\mu^*$, where $(p) \int_{\mathbb{E}} f d\mu^* is$ the pan-integral given in [3].

Proof. For any $E \in \mathcal{B}$, we have

$$(p) \int_{\underset{\bullet}{\mathbb{A}} \cap E^{f}} \underbrace{d\mu}_{s \in s(f)} \sup (\underset{i=1}{\overset{\bullet}{\mathbb{A}}} (\alpha_{i} \underbrace{\odot} \mu(\underset{\bullet}{\mathbb{A}} \cap E \cap E_{1}))) = \sup_{s \in s(f)} (\underset{i=1}{\overset{\bullet}{\mathbb{A}}} (\alpha_{i} \underbrace{\odot} \mu^{*}(E \cap E_{1})))$$

$$= (p) \int_{\underset{\bullet}{\mathbb{A}}} d\mu^{*}. \text{ The theorem is proved.}$$

Definition 2.1 Let $f \in M^+$, f is called a homeomorphic function, if f is a bijection and $f(E) \in \mathcal{B}_+$ whenever $E \in \mathcal{B}_+$, where \mathcal{B}_+ is the class of all Borel-sets on R_.

Theorem 2.2 Let $\underline{A} \in \mathcal{F}$, $f \in \underline{M}^+$. If we define $\mu(B) = \underline{\mu}(\underline{A} \cap f^{-1}(B))$ for any $B \in \mathcal{B}_+$, then μ is a fuzzy measure on (R_+, \mathcal{B}_+) .

It is very easy to prove Theorem 2.2 according to the definition of the fuzzy measure.

Transformation Theorem II. Let (X, \mathcal{F}, μ) be a fuzzy measure space, $A \in \mathcal{F}$, $f \in M^+$ be a homeomorphic function, μ be the fuzzy measure defined in Theorem 2.2 and $g: R_+ \to R_+$ be a Borel function. Then

 $(p)\int_{A}g \circ f d\mu = (p)\int_{R_{+}}g d\mu$. Where $g \circ f$ is the composition of f and g and

(p) $\int_{R_*} g \, d\mu$ is the pan-integral of g on R_+ with respect to μ_*

Proof. We denote $s(g \circ f) = \{s: s \leqslant g \circ f, s \in S\}$. $\overline{s}(g) = \{\overline{s}: \overline{s} \leqslant g \text{ and } \overline{s} \text{ is a nonnegative simple function on } (R_+, \mathcal{B}_+)\}$. Obviously $g \circ f \in M^+$.

If $s(x) = \bigoplus_{i=1}^{n} (\alpha_i \odot \chi_{E_i}(x)) \in s(g \circ f)$, we take $\overline{s} = \sum_{i=1}^{n} \alpha_i f(E_i)$, then $\overline{s} \in \overline{s}(g)$.

So we have $P_{\underline{A}}(s) = \bigoplus_{\underline{i}=1}^{n} (\alpha_{\underline{i}} \odot \underline{\mu}(\underline{A} \cap E_{\underline{i}})) = \bigoplus_{\underline{i}=1}^{n} (\alpha_{\underline{i}} \odot \underline{\mu}(\underline{A} \cap f^{-1}(f(E_{\underline{i}}))))$ $= \bigoplus_{\underline{i}=1}^{n} (\alpha_{\underline{i}} \odot \underline{\mu}(f(E_{\underline{i}}))) = P_{R_{+}}(\overline{s}) \leqslant \sup_{\overline{s} \in \overline{s}(g)} P_{R_{+}}(\overline{s}) = (\overline{p}) \int_{R_{+}} g \ d\mu. \text{ and therefore } (p) \int_{\underline{A}} g \circ f \ d\underline{\mu} \leqslant (p) \int_{R_{+}} g \ d\mu.$

On the other hand, if $\overline{s} = \sum_{i=1}^{m} \beta_{j} B_{j} \in \overline{s}(g)$, we take

 $s(x) = \bigoplus_{j=1}^{m} (\beta_j \odot \chi_{f^{-1}(B_j)}(x))$, obviously $s \in s(g \circ f)$. Thus we have

$$P_{R_{+}}(\overline{s}) = \bigoplus_{j=1}^{m} (\beta_{j} \bigcirc \mu(B_{j})) = \bigoplus_{j=1}^{m} (\beta_{j} \bigcirc \mu(A \cap f^{-1}(B_{j})))$$

$$= P_{A}(s) \leqslant \sup_{s \in s} P_{A}(s) = (p) \int_{A} g \circ f d\mu.$$

It follows that $(p)\int_{R_+} g d\mu \leq (p)\int_{\underline{A}} g \circ f d\mu$. The theorem is proved.

References

- [1]. Li Xiaoqi, Fuzzy Pan-integral, BUSEFAL, 33(1988), 104-112.
- [2]. Li Xiaoqi, Further Disgussions on Fuzzy Pan-integral, BUSEFAL, 35(1988), 38-44.
- [3]. Yang Qingji, The Pan-integral on the Fuzzy Measure Space, Fuzzy Math. 3(1985), 108-114(in Chinese).
- [4]. Wang Zhenyuan and Qiao Zheng, Transformation Theorems for Fuzzy Integrals on Fuzzy Sets, FSS, 32(1989).