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Abstract: In this paper, a family of extended fuzzy numbers
have been introduced by using some equivalent relatioh; The spaces
of convergent and bounded sequences of extended fuzzy number have
been discussed.
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1. Introduction

Bounded and convergent sequences of fuzzy numbers were introduced
by Matloka [2) where it was shown that every convergent sequences
is bounded. The spaces of bounded and convergent sequences of fuzzy
numbers where introduced by S. Nanda [1] where it was shown that
they are completed metric spaces. In this paper, we introduced a
family of extended fuzgy numbers and obtain the all conclusions in

(1. (2].
2. Preliminaries

Let D denote the family of all convex compact sets on the k-di-
mensional Euglidean space R". For A, B€D define '

Aj=inf {t, | (£, «ovy by, o0 b ) €AY
A;_=8up {ti |(t1’ ey ti, oo tk)eA}’ 181,2’000’k0

A~B iff Aj=B{ and Aj=B{, i=1,2,...,k.

It is easy to say that "~ " defines an equivalent relation on D .,



Baged on it, we can determine the quotient set denoted by D/~ .
For A, B €D/~ . define

A<B iff Aj¢B] and A}_s B*i. i=1,..4, K.

A=Biff ASB and AzB
-
R + o
= ¥y (& -BVI4;- BY)

d(A, B)= max (|4;-Bjl, W}-Bjl)
k

where " V " is boolean sum. It is easy to prove that d defines a met-
ric on D/~ , (D/~,d ) i8 a complete metric space, and "¢ " is a par-
tial order in D/~ .

A k-dimensional fuzzy number is a fuzzy subset of rK which is
closed, convex, bounded and normal. Let F(RK) denote the set of all
k-dimensional fuzzy numbers, for xc&F(RKQ define X, as the following

. {it | teR®, x(t)zA}  if ae(0, 1

it \teRK, x(t)v0} if A=0
"Let L(RX) denote the set of all k-dimensional fuzzy numbers which

have compact support. In this words, if x GI&RK), then for every ie¢
(o, 1], X, is convex and compact.

For X, Y € L(RK), define

X~Y iff X,~Y, for every Ad0, 1]
It is easy to see that ". " defines an equivalent relation on L(RK),
the quotient set is denoted by L(RK)/~ .

For X, Y‘GI&RK)/~f, define
XsY 4iff X,sY, for every Ae(0, 1]
K= Y iff X<Y and Y <X

then "< " is a partial order in L(RK)# .
A subset E/~ of L(RK)/_ is said to be bounded above if there

exists ZéL(Rk)/v, called an upper bounded of E/ , such that X< 2
for every x€éih , A lower bound is defined similarly, E/~ is said to
be bounded if it is both bounded above and bounded below.

Definition2.1 L(RK)/. is called a family of extended fuzzy num-



bers, i.e. x is called an extended fuzzy number if x ¢ L(RK) /~ .
Define a map a: (L(Rk)/.-\.,];(Rk)/--v)-aR1 by
d(X, Y) =osupq d(X, , Y,)

It is easy to see that d has determinate meaning.

Definition 2.2 A sequence x = {x;ﬁ;of extended fuzzy numbers
is said to be convergent to extended fuzzy number x ,, written as
lim x,= x,, if for every ¢ >0 there exists positive integer n such

n

that d(x,, x,) =€ for n=zn,
Let C, denote the all convergent sequences of extended fuzzy
numbers.,

A sequence x = {X.}7 of extended fuzzy numbers is said to be a
Cauchy sequence if for every ¢>0 there exists n,eN such that
d(xp, %n)<¢ for m, nzn,.
Let Co denote the all Cauchy sequences of extended fuzzy numbers.
Definition 2.4 A sequence x ={x.7 of extended fuzzy numbers is

said to be bounded if the set §{x.| n €N} of extended fuzzy numbers
is bounded.

Let B, denote the set of all bounded sequence of extended fuzzy
numbers.

We now introduce the 1!% space (1< p<w) of extended fugzy numbers
as the follbwing
1P = {x ={xn}:,]z'_:5(xn, 0)P< 00}

1 i.f ts(t‘loo- tk)=(o,ooo p)
where the " 0 " is defined by x(t) 3{0
otherwise

% . The results

We have the following results

Theorem 1 Every convergent sequence of extended fuzzy numbers
is bounded , i.e. c,cB,.

Proof: Let x = {x,}"¢C,, limxy= xoeL(Rk)/».then there exists n,



such that d(x,, x,)< 1 for nzn,, it implies that
[ (Cxpda )i = ((xo)n0p 51 [ ((xp)a)i= ((xo)a)]le

for every Ae(O, 11 , 1<isk and nzn,,
Put A =0

k « k
o = {7 (ol VTV (Gxolh)y )T fer!
131 J=1 131

- (R amo AL & (Jexphdter

then z2<x<y for every ne¢N and Xx, yeL(Rk)/-v

1 if (t1,..., tk)a( yeoesy )
where y = {
0 otherwise
1 if (t1,o.o, tk)a( poesey )
zZ =
0 otherwise

that is to say {xp}_ is bounded.

Pheorem 2 d defines a metric on L(R¥)/~ and ( L(RK) /o , @) 18
a complete metric space.

Proof It is clear that d(x, y) =0, d(x, y)=0 if and only if

x=y and d(x, y)=d(y, x) for arbitrary x, y ¢ L(RX)/x. Notice that
(DA ,d) is a metric space, we have

d(x)" 2, )Sd(x)\y In )"'d(y)\r z)\)
for arbitrary x, y, z¢ L(RK)/ and Aef0, 11, it implies that
d(x, z)<d(x, y)+d(y, z), so (L(RK)/~ , d) is a metric space.

If {x.} is a Cauchy sequence in L(RK)/~ , then {(xa)} is a Cauchy
sequence in D/~ for each A, A¢[0, 11 but (D/v, d) is complete then

lim (x,)h= X, Now lim xn= x and x € L(RK) /~. , this proves the com-
n

pleteness of L(Rk)/-v .

Theorem 3 C, is a complete metric space with the metric de-
fined by

¢ (x, y) = sup a (%, ¥n)



where x={x,}% ¢C, and y= {y.}m: € Co.

Proof . It is clear that p is a metric on Cp, To show that Co

is complete in this metric, let {x""}lf:, be &-Cauchy sequence in Cqy .

Then for each fixed n, {xi}> is a Cauchy sequence in L(RK) /. . But

k )
(L(R" )/~ , 4 ) is complete, hence lim x}‘l’- x, for each n, put x={xn}

we shall now prove that lim xVax and x eC,, since {x"} is a Cauchy

sequence in C,, given ¢>0 , there exists n,¢ Ny such that
a(x}';’, xg’)s €/5 for i, j zne
Taking the limit as j>w~ , we get

=y, xz)< €/5

Therefore lim x¥= x . It remains to show that x ¢Cy , since x'j’eCo ’

i
there exists xg ¢ L(R¥) /~ and nq €N , such that

a(x(,j;', x‘g’)< &5 for n z>n4q

Cd e = L C
Hence d(xg, x(ﬂ')s d(x?l", Ig') + d(f;'), x‘g) + d(X‘%’, X(g’)

< &5 + €/5 + §/5 = 3¢/5

for i, j 7 max (no, n4)

Thus {x‘g} is a Cauchy sequence in L(R¥)/~ , so by the theorem 2
there exists Xxq € L(Rk)/~ , such that

E(;%’, Xo)S 3€/5 for iz max (ng, nq)
therefore a(xno xo)i a(x(%l)’ xn) + a(x‘:;’ xqu) + ‘a(xc‘;." xO)

< &5 + &5 + 3E/5 =¢
This implies that x ¢C,, 80 (Co>» p) is complete.

heorem 4 . ( B,, f) is also a complete metric space.
Proof . It is similary to the proof of theorem 3 .

Theorem 5 . lp is a complete metric space with the metric h de-



fined by
h(x, y) = ( S a(xp, ¥n) pyt/p

e

where x = {x;}= €1P and y = fy }nelP

Proof . It is clear that (1P, h) is a metric space. To show that
1P is complete in this metric, let {xﬁiﬁ be a Cauchy sequence in 1P,

Then for each fixed n {xﬁ} is a Cauchy sequence in L(Rk)/», since
1

(L(R®) fr, Q)

is complete , we have 1]j:m iﬁ- X for each n N, Put x={xp., it can be

shown by standard arguments that lim £b= x and xe€1® .
i
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