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Abstract:

In this paper, we introduce the concept of fuzsy transcendental field extensions. We fuzzify the concept
of algebraic field extension in a different manner than as previously done. We show that every fuzzy
field extension has a fuzzy transcendence basis. We introduce neutral fuzzy field extensions.
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INTRODUCTION

The concept of fuzzy set was introduced by Zadeh [8]. Rosenfeld [7] inspired the development
of fuzzy algebraic structures. The development of fuzzy group theory and, to a much lesser extent,
fuzzy ring theory has been rapid. However, little has been done in the development of fuzzy field
theory. The purpose of this paper is to continue the work which has taken place in fuzzy field theory [1,
3 - 6]. We fuzzyify the notion of an algebraic field extension in a different manner than in [4]. We
note the strengths and weaknesses of each fuzzification. We introduce the concept of fuzzy
transcendental field extensions. We show that every fuzzy field extension has a fuzzy transcendence
basis, Theorem 3.12. We discover a concept for fuzzy field extensions which ordinary field extensions
do not possess. We say that a fuzzy field extension with this property is neutral. It appears that the

notion of neutrality for fuzzy field extensions corresponds to that of equality for ordinary field

extensions.

Let R denote a commutative ring with identity. A fuzzy subset X of R is a function from R
into the closed interval [0, 1]. Let X and Y be fuzzy subsets of R. Then addition and multiplication of
X and Y is given by for all z € R, (X + Y)(z) = sup{min{X(x), Y(y)}| z = x + y} and (XY)(z) =
sup{min{X(x), Y(y)}{ z = xy}. fc € Randt € [0, 1], we let c; denote the fuzzy subset of R
defined by c;(z) = t if z = c and ¢((z) = 0if 2 # c. c; is called a fugsy singleton. We say that X C
Y if and only if X(z) < Y(z)forallz € R. Wesaythat X ¢ YifX € Yand 3z € R such that
X(z) < Y(z). If ¥ is a collection of fuzzy subsets of R, then we define the fuzzy subsets N ¢ and
Xlé ¢ of R by for all z € R, g(ré y)(z) = inf{X(z) | X € ¥} and S(LEJ y)(z)

=sup{X(z) | X€ ¥}. ft € [0,1], welet X; = {x € R|X(x) > t}and X* = {x € R|X(x) >
0}. For S a subset of R, we let g denote the characteristic function of §, i. e., bg(z) =1ifz € Sand
6S(z) = 0 otherwise. A fuzzy subset A of R is called a fuzsy subring of R if and only if A(1) = 1 and
forall x,y € R, A(x —y) > min{A(x), A(y)} and A(xy) > min{A(x), A(y)}. We let F(R) denote
the set of all fuzzy subrings of R. Let F be a field. A fuzzy subset A of F is called a fuzzy subfield of
F if and only if A is a fuzzy subring of F such that forall x € F, x # 0, A(x'l) = A(x). We let F(F)
denote the set of all fuzzy subfields of F. If A, B € ¥(F) and B C A, we write A/B and call A/B a
fuszy field extension. We let F(A) denote the set of all fuzzy subsets X of F such that X C A and
F(A/B) the set of all fuzzy subfields C of F such that B C C C A. f A € F(F)and t € [0, 1],
then A; and A* are subfields of F. We let N denote the set of positive integers. A fuzzy subset X of F
is said to have the sup property if and only if every nonempty subset of Im(X), the image of X, has a

maximal element.



1. FUZZY GENERATORS

Proposition 1.1. Let X and Y be fuzzy subsets of R. Let A € F(R). X, Y C A, then X +
Y € Aand XY C A.

Proposition 1.2. Let X be a fuzzy subset of F. Let A € ¥(F). Define the fuzzy subset x1of
FbyVi € F,z # 0, X'1(z) = X(z'1) and X"1(0) = X(0). IfX C A, then X! C A.

For any fuzzy singleton x; of F, it follows easily that (xt)'1 = (x'l)t.

Definition 1.3. Let A, B € ¥(R), B C A, and let X be a fuzzy subset of R such that X C
A. Define B[X] to be the intersection of all C € F(R) suchthat B U X C C C A.

Definition 1.4. Let A, B € ¥(F), B C A, and let X be a fuzzy subset of F such that X C A.
Define B(X) to be the intersection of all C € F(F) such that B U X C C C A.

It follows easily that B[X] is a fuzzy subring of R in Definition 1.3 and that B(X) is a fuzzy
subfield of F in Definition 1.4.
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Theorem 1.5. Let A, B € F(R) be such that B C A and let X be a fuzzy subset of R such
that X C A. Define the fuzzy subset Sof Rby Vz € R,

S(z) = sup{(E(bi)ui(xi)t)(z) | B(by) = w;, X(x)) = & if i; # Oand t; € {X(x)), 1} if i; = 0;
ij =0, 1, ...mj;j =1,.,n;n € N}.
Then S = B[X].

Theorem 1.6. Let A, B € F(F) be such that B C A and let X be a fuzzy subset of F such
that X C A. Define the fuzzy subset S of F by Vz € F,

8(z) = 5“11’{(2(1’i)ui(1‘l )t)():(c,-)vj(y’)s)'l(Z) | B(by) = u;, X(x) = t) if iy # Oand t, €
{X(xk), 1} if i = 0; =01, ., m;k=0,1,.. n;n € N; B(cj) = Vj X(yh) =g, ifjp # 0and
s, € {X(yh), 1} ifj, =0;j,=0,1, .., q;h=1.,55r € N}

Then S = B(X).

2. FUZZY ALGEBRAIC INDEPENDENCE

If X is a fuzzy subset of F, we let $(X) = {x; | t = X(x) > 0}. If ¥ is a set of fuzzy singletons



such that x;, x; € ¥ implies t = s, then we let X(¥) denote the fuzzy subset of F defined by X(¥)(x)
=tifx; € ¥and X($)(x) = 0if x; ¢ ¥. Clearly, X(#(X)) = X and #(X(¥)) = §. Weleti= (i, ..

in)-

*y

In the remainder of the paper, A, B € ¥(F)and B C A.

Definition 2.1. Let X € ¥F(A). Then X(or $(X)) is said to be fuzzy algebraically independent
over B if and only if V (xl)tl’ vy (xn)t’n € ¥(X),Yby,..,b, € F, Vs € (0, 1], Z(bi)ui(xl)t = O
where B(b;) > u; and X()S) 2t ( =1, ..., n) implies b, = 0 for all i.

If ¢ C A is fuzzy algebraically independent over B, then c¢ , is also said to be fuzazy
transcendental over B.

Proposition 2.2. Let X € F(A). Then X is fuzzy algebraically independent over B if and only
if Vs € (0, 1], X; is algebraically independent over B,.

Proposition 2.3. Let X € ¥(A). Then X is fuzzy algebraically independent over B if and only

if X* is algebraically independent over B*.
Proposition 2.4. Let X € F(A).
(i) vt € (0, 1], By(X;) € B(X);
(ii) If B(X) has the sup property, then ¥ t € (0, 1] By(X;) = B(X);.
Proposition 2.5. Let X € F(A). Then B(X)* = B*(X*) and B[X]* = B*[X*].

Let X € ¥(A). We say that X is maximally fuzzy algebraically independent over B if and

only if X is fuzzy algebraically independent over B and there does not exist Y € F(A) such that Y is
fuzzy algebraically independent over B and X C Y.

Proposition 2.6. Let X € F(A). Suppose V x € X* that X(x) = A(x). Then X is maximally

fuzzy algebraically independent over B if and only if X* is a transcendence basis of A*/B*.
The cardinality of a fuzzy subset X of F is defined to be the cardinality of X*.

Corollary 2.7. A/B has maximal fuzzy algebraically independent fuzzy subsets of F and the

cardinality of each is unique.

3. FUZZY ALGEBRAIC FIELD EXTENSIONS AND FUZZY TRANSCENDENCE BASES

Let ¢; C A, t > 0. Suppose that c; is not fuzzy algebraically independent over B. Then 3 n
€ N,3b, € B*, 3 s, uy, € (0, 1] such that B(bi) =y fori =0, 1, ..., n and such that 05 =
n .

3 (bi)u-(ct)l with not all b, = 0. If the only such s that exist for which such an equation holds are
- i

1=
strictly less than t, then c; is not fuzzy algebraic over B according to [4, Definition 1.1]. There are



other complications that arise with [4, Definition 1.1] which we point out in this section. Hence it
would seem that c; should be called fuzzy algebraic over B if ¢, is not fuzzy transcendental over B.
However there are also complications with this definition which we point out in this section and the
next. In order to compare the two ideas of fuzzy algebraic, we define some new terminology. This

terminology should be considered temporary.

Definition 3.1. Let ¢, C A with t > 0. Then ¢ is called fuzsy algebraical over B if and only
if ¢; is not fuzzy transcendental over B. If every such c; is fuzzy algebraical over B, then A/B is called

fussy algebraical; otherwise A/B is called fuzzy transcendental.

Definition 3.2. Let ¢, C A witht > 0. If 35 € (0, t] such that ¢g C B, then c; is called

neutral over B. If every such c; is neutral over B, then A/B is called neutral.

Clearly, A/B is neutral if and only if A* = B*. Suppose that forc € F, t = A(c) > B(c) = s
> 0. Then ¢; + (—cg) = Og so that c; is fuzzy algebraical over B. In fact, we can think of c, as being a
root of a first degree polynomial in x, x + (—cg), with ¢g C B.

Example 3.3. Let F = P(t)(c) where P is a field, t is transcendental over P, and c is a root of

the polynomial f(x) = x2 4 tx + t over P(t). By Eisenstein’s criterion, f(x) is irreducible over P(t).

Let A = 6p. Define the fuzzy subset B of F by B(y) = 1ify € P, B(y) = 3/4ify € P(t) — P, and
B(y) =1/2 ify € F — P(t). Then B is a fuzzy subfield of F and B C A. Now ©3/4 + (— c1/2)

1/2 and so °3/4 is neutral over B. In fact, A/B is neutral. Also, (c3/4) + t3/4 3/4 + t3/4 = 03/4

Thus cq /4 /4 is fuzzy algebraic over B. Of course , f(x) i 1s not irreducible over B*. V t € (3/4, 1], c; is

neutral over B, but not fuzzy algebraic over B for if E (b, )(ct)1 = 0y, then B(b;) > u; > t which is

impossible since bi would be in P, but ¢ is not algebralc over P.

One of the strengths of the concept of a fuzzy algebraic field extension is its characterization in

terms of level subfields [4, Theorem 2.1]. We now show that the concept of a fuzzy algebraical field

extension A/B is characterized in terms of A*/B*.
Proposition 3.4. A/B is fuzzy algebraical if and only if A*/B* is algebraic.
Corollary 3.5. Let X € F(A). Then B(X) = B[X] if and only if B(X)/B is fuzzy algebraical.

Corollary 3.6. Let C € F(A/B). Then A/B is fuzzy algebraical if and only if A/C and C/B

are fuzzy algebraical.

Definition 3.7. Let ¢, C A with t > 0. Suppose that c is a root of a polynomial p(x) = knxn
+ ... +kix+ kO over B*. We say that ¢; is fuszy algebraical with respect to p(x) over B* if and only
if Og E(k)u(ct) for some u; € (0, 1] where B(k;) > u;fori=0,1,..,nands < t. Fors=t,
we say that ¢; is fuszy algebraic with respect to p(x) over B*



Lemma 3.8. [2] Letk,b € B* k # 0. If B(k) # B(b), then B(kb) = min{B(k), B(b)}.

Proposition 3.9. Let ¢ ; C A with t > 0. Suppose that c is algebraic over B*. Let p(x) be the
minimal polynomial of ¢ over B*. If ¢; is fuzzy algebraical (not fuzzy algebraic) with respect to p(x),

then c; is fuzzy algebraical (not fuzzy algebraic) with respect to every irreducible polynomial over B*

which has ¢ as a root.

Example 3.10. Let F, ¢, and A be defined as in Example 3.3 where P is a perfect field of
characteristic p > 0. Define the fuzzy subset B of F by B(y) = 1ify € P, B(y) = 3/4ify € P(tP) —
P,B(y) =1/2ify € P(t) P(tP), and B(y) = 0 ify € F — P(t). Then B is a fuzay subfield of F
and B C A. Let p(x) = x2 + tx + t and q(x) = x2P 4 tPxP + tP. Then ©3/4 is fuzzy algebraic with
respect to q(x) over B* since (cg / ", 2p (tg / 4)p(c3 / 4) + (t3 4) =04 /4 and cg /4 is fuzzy algebraical
(not fuzzy algebraic) with respect to p(x) over B* since (c3 / 4) +t; /2534 +t /2= 0, /2

Proposition 3.11. Define the fuzzy subset B™ of F by B(n)(x) = A(x)ifx € B* and B(n)(x)

=0ifx ¢ B*. Then B(®) € F(A/B). Suppose that inf{A(x) | x € B*} > sup{A(x) | x¢ B*}. If
A/B is fuzzy algebraical, then A/B(n) is fuzzy algebraic.

B®) is called the neutral closure of B in A. Let ¢, C A with t > 0. If ¢, + (—c)g = 0g with s
>0 and (—c)g C B™, then B™W(c) > s > 0and soc € B™*. Hencee, ¢ B®. That is, if c, is
neutral over B(n), then ¢, C B(n).

We now turn our attention to fuzzy transcendence bases.

Definition 3.12. Let X € %F(A). Then X is called a fuzzy transcendence basis of A/B if and
only if X is fuzzy algebraically independent over B and A/B(X) is fuzzy algebraical.

Theorem 3.13. A/B has a fuzzy transcendence basis and the cardinality of a fuzzy

transcendence basis is unique. In fact, X is a fuzzy transcendence basis of A/B if and only if X* is a

transcendence basis of A*/B*.

It is clear that not every fuzzy field extension A/B has a fuzzy transcendence basis X in the
sense that A/B(X) is fuzzy algebraic. For example, let A/B be a nontrivial neutral fuzzy field

extension.

4. FUZZY ALGEBRAICAL CLOSURES

Throughout this section we assume that F has characteristic p > 0. If the concept of algebraic
field extension is fuzzified by way of fuzzy algebraical field extensions, then the concepts of fuzzy purely

inseparable [4] and fuzzy separable algebraic [4] field extensions should be modified accordingly. We

introduce new terminology here also.



Definition 4.1. Suppose that ¢; C A with t > 0. Then c; is said to be fuszy pure inseparable
oveanfandonlyxfBe € N u {0},3by by € B*, 3s,up, uy € (0, 1, B(b)_u fori=0,1
such that (kl)u (ct)p + (ko)u = 05 A/B is called fussy pure inseparable if and only if every ¢, C
Awitht > 0is fuzzy pure mseparable over B.

Definition 4.2. Suppose that ¢, C A with t > 0. Then c ¢ is said to be fuzsy separable
algebmu:aloverBlfandonlylan € N,3b, € B* 3s,u; € (0, 1], B(b,) =y, fori =0, 1,
such that 0 2 (k;)y, (ct)1 and the polynomial Zk xi (in x) is separable over B*. A/B is called
fuzsy separable algebrucal if and only if every c, C X with t > 0 is fuzzy separable algebraical over B.

Now ¢, C A (t > 0) is neutral over B if and only if c; is fuzzy pure inseparable and fuzzy
separable algebraical over B, yet in either event it is not necessarily the case that ¢ € B. Ifcis
fuzzy purely inseparable and fuzzy separable algebraic over B, then ¢; € B, [3]. Another complication

or difference from the fuzzy purely inseparable case is that ¢, may be fuzzy pure inseparable over B

without (ct’)p C Bforsomee € N.
Proposition 4.3. (i) A/B is fuzzy pure inseparable if and only if A*/B* is purely inseparable.
(i) A/B is fuzzy separable algebraical if and only if A*/B* is separable algebraic.

Corollary 4.4. Let C € F(A/B).
(i) A/B is fuzzy pure inseparable if and only if A/C and C/B are fuzzy pure inseparable.

(i) A/B is fuzzy separable algebraical if and only if A/C and C/B are fuzzy separable

algebraical.

Proposition 4.5. Let ¢, C A with t > 0. If ¢; is fuzzy algebraical (pure inseparable or
separable algebraical) over B, then B(c;)/B is fuzzy algebraical (pure inseparable or separable

algebraical).

Definition 4.6 Let X € F(A). Then X is called a fuszy separating transcendence basis of A/B
if and only if X is fuzzy algebraically independent over B and A/B(X) is fuzzy separable algebraical.

Proposition 4.7. A/B has a fuzzy separating transcedence basis if and only if A*/B* has a
separating transcendence basis. In fact, X is a fuzzy separating transcendence basis of A/B if and only

if X* is a separating transcendence basis of A* /B*.

Let C € ¥F(A/B). We say that C is the fuzzy algebraical closure of B in A if and only if C/B
is fuzzy algebraical and ¥V ¢, C A with t > 0, ¢y fuzzy algebraical over B implies ¢, C C. Fuzzy pure

inseparable and fuzzy separable algebraical closures of B in A are defined similarly.

Proposition 4.8. (i) B has a fuzzy algebraical (pure inseparable, separable algebraical) closure
in A. In fact, B(c) (B(l), B(s)) is the fuzzy algebraical (pure inseparable, separable algebraical) closure



of B in A if and only if B(c)* (B(i)*, B(S)*) is the algebraic (purely iseparable, separable algebraic)
closure of B* in A*, i. e., B(9* = B*(®) (8()* _ p*(i) p(&)* _ p*(s)),

(ii) B(c) o) B(i), B(s) and B(c)/B(S) is fuzzy pure inseparable.
We now show that B does not necessarily have a fuzzy algebraic closure in A.

Example 4.9. Let F = P(x) where P is a perfect field of characteristic p > 0 and x is
transcendental over P. Let A = §y. Define the fuzzy subset B of F by B(y) = 1ify € P and B(y) =
i+ DHify € P(xpl) - P(xpl 1) fori =0, 1, ... Then B is a fuzzy subfield of F and B C A.
Define the fuzzy subset C; of F by C(y) = lify € P, C=i/i+1)ify € F - P(xpl+1), and
Ci(y) = By)ify € PP )fori=1,2 ... Then G; € F(A/B)fori=1,2... AlsoA =i‘_’_d’ C,
Let ¢, C C;. Suppose that t = 1. Thenc € P = (Ci)t = By and c is algebraic over B;. Suppose
that 0 <t < 1. Then B; = P(xp]) for some j. Hence c is algebraic (purely inseparable) over B;. Thus
¢, is fuzzy algebraic over B [4, Theorem 2.1]. Hence Ci/B is fuzzy algebraic fori = 1, 2, .... Now A/B
is not fuzzy algebraic since forc € F — P, ¢y € A, but c is not algebraic over B1= P, [4, Theorem
2.1]. That is, A is a union of an ascending sequence of fuzzy subfields of F each fuzzy algebraic over B,
but A is not fuzzy algebraic over B. Thus B does not have a fuzzy algebraic closure in A. However

A/B is fuzzy algebraical so A is the fuzzy algebraical closure of B in A.
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