Purry Linear Systems Ketty PREVA

Sofia 1000, P.O.Box 384, Inst. of Appl. Math., Technical University

Let $IL=(L,v,\Lambda,0,1)$ be a bounded chain, $I,J\neq\emptyset$ be finite sets and a: $IxJ \longrightarrow L$ be a map. $A=(a_{ij}) \in L^{IxJ}$ is a matrix over L if $a_{ij}=a(i,j)$, $\forall i \in I$, $\forall j \in J$. The product $C=A.B=(c_{ij}) \in L^{IxJ}$ is defined with $c_{ij} = V_{k \in K} (a_{ik} \wedge b_{kj}), \forall i \in I, \forall j \in J.$

In what follows {1} stand for the singleton set, |I| =m \in N, |J|=n EN. The matrices A, X and B denote coefficients, unknowns and constants respectively. We shall write A.X=B, A.X > B, A.X \leq B, A.X \leq B for (1),(2),(3),(4),(5) respectively:

$$V_{j \in J} (a_{ij} \wedge x_{j}) = b_{i}, i \in I$$
 (1)

$$\begin{array}{lll}
\mathbf{v}_{j \in J} & (\mathbf{a}_{i j} \wedge \mathbf{x}_{j}) = \mathbf{b}_{i}, \text{ if } & (1) \\
\mathbf{v}_{j \in J} & (\mathbf{a}_{i j} \wedge \mathbf{x}_{j}) \geqslant \mathbf{b}_{i}, \text{ if } & (2) & \mathbf{v}_{j \in J} (\mathbf{a}_{i j} \wedge \mathbf{x}_{j}) > \mathbf{b}_{i}, \text{ if } & (3) \\
\mathbf{v}_{j \in J} & (\mathbf{a}_{i j} \wedge \mathbf{x}_{j}) \leqslant \mathbf{b}_{i}, \text{ if } & (4) & \mathbf{v}_{j \in J} (\mathbf{a}_{i j} \wedge \mathbf{x}_{j}) < \mathbf{b}_{i}, \text{ if } & (5)
\end{array}$$

$$\forall_{j \in J} (a_{ij} \land x_{j}) \notin b_{i}, i \in I$$
 (4) $\forall_{j \in J} (a_{ij} \land x_{j}) \land b_{i}, i \in I$ (5)

where $A=(a_{ij})\in L^{IxJ}$, $X=(x_j)\in L^{Jx\{1\}}$, $B=(b_i)\in L^{Ix\{1\}}$. If the statement is valid for any of (1) + (5) we write $A.X \perp B$ or (\perp). $X^0=(x_j^0)\in L^{Jx\{1\}} \text{ is a point solution of } (\perp) \text{ if } A.X^0 \perp B \text{ holds;}$ P^0 is the set of all point solutions of (\perp). If $P^0\neq\emptyset$, then (\perp) is consistent, otherwise it is inconsistent. $\underline{x}^o \in P^o$ is a lower point solution of A.X.L.B if for any $X^0 \in P^0$ the relation $X^0 \nsubseteq X^0$ implies $X^0 = \underline{X}^0$. The upper point solution is defined dually. $X_j \subseteq L$ is called feasible, if the choise of any $x_j \in X_j$ does not result in a contradiction in (\bot). An n-tuple ($X_1, ..., X_n$) of feasible intervals is an interval solution of (\bot) if any $X^0 = (x_j^0)$ with $x_j^0 \in X_j$ belongs to P^0 . We assign to A.X \bot B a new system A^{\bot} .X \bot B, where $A^{\bot} = (a_{ij}^{\bot})$ is

computed from A with respect to B: $a_{ij}^{\underline{x}} = G$ if $a_{ij} > b_i$; $a_{ij}^{\underline{x}} = E$ if

a_{ij}=b_i; a_{ij}=S if a_{ij} < b_i.

LEMMA. The systems A.X \(\) B and A*.X \(\) B are equivalent.

Let the system A.X LB be given and the jth column in A^{*} be fixed; k stand for the greatest number of the row with G-type coefficient and r - for the smallest number of the row with E-type coefficient in the jth column of A.

THEOREM 1. Let the system A.X = B be given.

i) If the jth column of A^{*} contains G-type coefficient a^{*}_{kj}, then:

^{*} The complete text will appear in Fuzzy Sets and Systems

- a) $X_j = [0, b_k]$ is a feasible interval for the jth component;
- b) $x_j = b_k$ implies $a_{ij} \times x_j = b_i$ for i = k, for each $i \le k$ with $a_{ij} > b_i = b_k$ and for each i > k with a = b;
- ii) if the jth column of A does not contain any G-type coefficient, but it contains E-type coefficient $a_{r,j}^{\mathbf{z}} = b_{\mathbf{r}}$, then:
- a) X = L is a feasible interval for the j-th component;
- b) $x_j \in [b_r, 1]$ implies $a_{ij} \wedge x_j = b_i$ for each $i \ge r$ with $a_{ij} = b_i$; iii) if the jth column of A^m does not contain neither G, nor E-type coefficient, then $X_j=L$ is feasible and $a_{ij} \wedge x_j < b_i$ holds for any x_j . THEOREM 2. Let the system A.X > B be given.
- i) If the jth column of A contains G-type coefficient akj, then:
- a) $X_j = [b_k, 1]$ is a feasible interval for the jth component;

- b) $x_j \in [b_k, 1] \Rightarrow a_{ij} \wedge x_j \wedge b_i$ for i=k, for each i<k with $a_{ij} > b_i = b_k$; c) for i>k: if $a_{ij} = b_i$, then $x_j \in [b_r, 1]$ means $a_{ij} \wedge x_j = b_i$; ii) if the jth column of A^m does not contain any G-type coefficient, but it contains E-type coefficient arj=br, then:
- a) $X_j = [h_r, 1]$ is a feasible interval for the jth component;
- b) $x_j \in [b_r, 1]$ implies $a_{ij} \wedge x_j = b_i$ for each $i \ge r$ with $a_{ij} = b_i$ and there does not exist $x_j \in L$ such that $a_{ij} \wedge x_j > b_i$; iii) if the jth column of A^m contains only S-type coefficients, then
- $a_{ij} \wedge x_{j} < b_{i}$ for each $x_{j} \in L$.

TREOREM 3. Let the system A.X & B be given.

- i) If the jth column of A^{\pm} contains G-type coefficient a_{kj}^{\pm} , then for any $x_j \in [0, b_k]$ and: for i=k the inequality $a_{ij} \wedge x_j \leq b_i$ holds; for i < k and $a_{ij} > b_i$ the inequality $a_{ij} \wedge x_j \le b_i$ holds; for any Etype coefficient $a_{ij}^{*}=b_{i}$, the inequality $a_{ij} \wedge x_{j} \leq b_{i}$ holds for any $i \in I$; ii) if the jth column in A does not contain any G-type coefficient, but it contains E-type coefficient, then X =L is a feasible interval and $x_j \in L$ means $a_{ij} \land x_j \nleq b_i$ for each $i=1,\ldots,m$. iii) if the jth column in A^m contains only S-type coefficients, then
- $a_{i,j} \land x_{i,j} \lt b_{i,j}$ for each i=1,...,m and any $x_{i,j} \in X_{i,j} = L$.

For A.X > B and A.X < B a slight modification of these results is

COROLLARY: The following problems are algorithmically decidable for (1): is the system consistent or not; if it is consistent - computing the greatest point solution, the lower point solutions, the maximal interval solutions; marking the numbers of the contradictory equations, if the system is inconsistent.