SOFT FUZZY <-ALGEBRAS

Radko MESIAR

We generalize some notions of the classical measure theory to the fuzzy case preserving as much classical properties as possible. We use the Zadeh's fuzzy connectives. Let $X \neq \emptyset$ be a universum. Then

S is a **G-algebra**

6 is fuzzy **6**-algebra [1]

Ø. Xes

0_X, 1_X 65

 $A \in S \Longrightarrow A^{\circ} \in S$ $\{A_{n}\} \subset S \Longrightarrow \bigvee A_{n} \in S$ $\{A_{n}\} \subset S \Longrightarrow \bigvee A_{n} \in S$

The next notions (in fuzzy set theory) are due to Piasecki.

A $\cap A^{C} = \emptyset$ empty set

A $\cup A^{C} = X$ universum

W-empty set

W-universum

 $W_{\cap}(\, \, \boldsymbol{\varsigma} \, \,)$ is the system of all W-empty sets of $\boldsymbol{\varsigma}$

 $W_1(c)$ is the system of all W-universums of c

 $A \cap B = \emptyset$ disjoint sets $\bigwedge M \in W_{\cap}(C)$ W-disjointness The original Piasecki's W-disjointness follows from A is disjoint with B iff $A \subset B^{C}$ [3], i.e. M is W-disjoint with m iff m ≤ m'(i.e. the Lukasiewicz's conjunction of m and γ is 0_{γ}). However, both principles lead to the same results. It is natural to demand no W-empty set be a W-universum, simultaneously, i.e. $W_0(\mathcal{C}) \cap W_1(\mathcal{C}) = \emptyset$. This is equivalent to the condition $(1/2)_X \neq C$. If $(1/2)_X$ is not contained in a fuzzy & -algebra &, then is called a soft fuzzy 6 -algebra.

Example 1. Let 6 be any fuzzy 6-algebra and let MCW1(6), m= (1/2) I then fm = {mes, yvy' >m} is a soft fuzzy €-algebra and Mis a lower bound of the system W1(6m).

It is easy to see that the smallest soft fuzzy sub-6 algebra of 6 is $\{0_X,1_X\}$ and that the greatest one needn't exist. We ask if any soft fuzzy &-algebra & is of a similar form as f_{M} , i.e. there is (in some sense) a lower bound of $W_1(C)$ contained in $W_1(C)$. This is not true (see Example 2.), in general, nor in the form presented in Example 1., neither in a weaker form: there is $m \in W_1(G)$ such that for any $\eta \in W_1(G)$ there is $T \in G$, $\{\eta \notin V\} \subset \{T = 1/2\}$.

Example 2. Let X = [0,1], $G = \{u, u(x) \in \{0,\frac{1}{4},\frac{3}{4},1\}$, $u(x) \in \{1,\frac{1}{4},\frac{3}{4},1\}$ at most in countably many x s $\{1,\frac{1}{4},\frac{3}{4},1\}$ a soft fuzzy $\{1,\frac{1}{4},\frac{3}{4},1\}$ at most in countably many $\{1,\frac{1}{4},\frac{3}{4},1\}$ of above mentioned types.

Some results for C being a soft fuzzy C-algebra [2],[4]: $K(C) = \{ACX, \exists_M \in C: \{M > 1/2\} \subseteq A \subseteq \{M \geq 1/2\} \}$ is a C-algebra of crisp subsets of X. Let $M \in W_1$ (C). Then $M = \{ \gamma \in C, \gamma \lor \gamma' = M \} \cup \{ 0_X, 1_X \}$ is a soft fuzzy C-algebra. We have $C = \bigcup_{W_1} C \in C$, $K(M) = \bigcup_{W_1} K(C \in C)$.

Let f be a random variable on (X,K(6)). Then there is $M \in W_1(S)$ such that f is $K(S_n^{\frac{1}{2}})$ -measurable. The same is true for any denumerable system {f_n} of random variables on (X,K(S)). This fact is of great importance in the theory of fuzzy observables [5] . For more details see [2]. probability measure P on (X,S) fuzzy P-measure p on (X,S) P(X) = 1, $X = AUA^{c}$ p(NN') = 1 $\{A_{n}\}CS$ pairwise disjoint $\{M_{n}\}CS$ pairwise W-disjoint $P(UA_{n}) = \sum P(A_{n})$ $p(NM_{n}) = \sum p(M_{n})$ It is easy to see that wast be a soft fuzzy -algebra. Problem(Dvurečenskij): Let 6 be a soft fuzzy 6-algebra. Does there exist a fuzzy P-measure p on (X, 6)? If U = 1/2 f X, then the answer is positive. In general, this problem remains open. p on (X, <) is equivalent to P on (X,K(C)), p(M) = P(M > 1/2) and P(A) = p(M) if $\{m>1/2\} \subseteq A \subseteq \{m\geq 1/2\}$. More, for any $m \in \mathbb{R}$, P(m = 1/2)=0. Hypothesis. Let 6 be a soft fuzzy &-algebra and let p be a fuzzy P-measure on C . Then there is $M \in W_1(C)$ such that $K(\mathbf{S}_{\mathbf{M}}^{\mathbf{H}}) = K(\mathbf{C}), P-\mathbf{a.e.}, i.e. for any <math>A \in K(\mathbf{C})$ there is $B \in K(\mathcal{L})$ such that $P(A \cup B) = P(A \cap B)$. REFERENCES

- [1] Khalili S. (1979), Fuzzy measures and mappings, J. Math. Anal. Appl. 68, 92-99.
- [2] Mesiar R., Fuzzy observables, to appear.
- [3] Piasecki K. (1985), Probability of fuzzy events defined as denumerable additivity measure, FSS 17, 271-284.
- [4] Piasecki K. (1987), Extension of fuzzy P-measure generated by usual measure, Fuzzy Mathematics 7, No. 3-4, 117-124.
- [5] Riečan B. (1988), A new approach to some notions of statistical quantum mechanics, Busefal 35, 4-6.

Authors address: Radko Mesiar, Radlinského 11,81368Bratislava, CSFR.