ON PSEUDO-TRANSITIVE FUZZY RELATIONS

Michael Wagenknecht

We consider a generalization of the well-known notion of fuzzy transitive relations which can be used to determine lower and upper transitive approximations of a given fuzzy relation. This is of importance in decision-making and clustering where the frequently used transitive closure may fail.

<u>Denotations</u>: \mathfrak{X} -classical set (basic space); \mathscr{F} - set of all fuzzy relations over $\mathfrak{X}\mathfrak{X}\mathfrak{X}$ with values in [0,1]; "o"-fuzzy composition with continuous t-norm.

<u>Definition 1:</u> Let R, A=F. We call R pseudo-transitive (pt) with respect to A iff

$$R^2 \wedge A \leq R \tag{1}$$

("^" means pointwise minimum). The set of all pt-relations is denoted by $\mathcal{F}_{\mathbf{A}}$.

<u>Definition 2:</u> Let R, $A \in \mathcal{F}$. R $\in \mathcal{F}$ is an upper pt-relation (uptr) iff

$$R_{U} \ge R$$

holds (for lower ptr R_{t} (lptr) correspondingly).

Now let
$$T_1 = R$$
, $T_i = (R_0 T_{i-1} \vee T_{i-1} \circ R) \wedge A$, $i = 1, 2, ...$ (2)

("v" for pointwise maximum).

Theorem: The set of uptr has a least element given by

$$\hat{R} = \bigvee_{i \ge 4} T_i . \tag{3}$$

For lptr we can show the existence of maximal elements using Zorn's Lemma. Their determination is an open problem. Nevertheless, using the special form

$$R_L = T \wedge R$$

with T transitive. Then we get

$$(T \land R)^{2} \land A \leq (T^{2} \land T \circ R \land R \circ T \land R^{2}) \land A$$

$$\leq (T \land T \circ R \land R \circ T \land R^{2}) \land A \qquad (5)$$

and we have to determine T such that

$$(T \wedge R)^2 \wedge A \leq T \wedge R$$
.

From (5) follows that it is sufficient to demand

 $T_0R \leq U$

or

 $T \circ R \leq R$

where U is a known relation ≥ R.

Particularly, using (3) and (4) one gets transitive inclusions for a given fuzzy (maybe non-transitive) relation.

References

- 1. D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications. Academic Press, N. Y. 1980.
- 2. M. Wagenknecht, On pseudo-transitive approximations of fuzzy relations. Submitted to FSS.

Mailing address: Dr. Michael Wagenknecht

Institut for Chemical Technology
Rudower Chaussee 5,1199 Berlin(East), FRG.