FUZZY RELATIONS FROM A CATEGORICAL POINT OF VIEW
Ulrich HoOhle

Let L be a complete Heyting algebra - i.e. a complete lattice (L,s)
satisfying the infinite distributive law

a AV B;) = \/(a/\ei)
iel iel

Further every set X can be provided with the crisp equality (= Kronecker
symbol) 8 defined by d8(x,x) =1 and &(x,y) = O whenever x # vy

1. It is well known that every L-fuzzy subset py of X (i.e. y : X — L )
can be identified with a subobject ((S(u),E),m) of (X,8) in the
sense of Higgs's topos L-SET (cf. [2],[31,[41) as follows

S(u) = {a°X{X} | xeX , a < p(x)}
E(Ocl.X{Xl} s OLZ.X{XZ}) = a,ra, AS(X,,X,)
ITI(Otl"X{X} s .Y) = a, ,\(S(XsY)

and vice versa.
2. Let € be a finitely complete category. A €-subobject

R —<&D> .y .y of XxX is an equivalence relation (cf. [1]) iff

(i) The diagonal of XxX factors through <a,b> . (Reflexivity)
(ii) There exists T : R— R s.t. bet = aand a*t =b . (Symetry)
(iii) If
T_.q___»R
p l ) b is a pullback ,
R X

then <bep,a*q> : T — X x X factors through <a,b>. (Transitivity)

3. Theorem For every L-fuzzy relation u : XxX — L the following
assertions are equivalent
(a) ((S(uw),E),m) 1is an equivalence relation in the sense of Higgs's
topos L-SET .
(b) u satisfies the subsequent conditions

uix,x) =1 , wlxy) = wly,x) , uwlx,y)auply,z) £ u(x,z)
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