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Abstract. In this note the definition of primary
submodule of a L—-fuzzy module 1is given, and some
results, specially a characterization of L-fuzzy primary

submodule, are proved.
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i. Introduction.

In (4] and (7], the concept of fuzzy primary ideal
and L-fuzzy primary ideal of a ring R are discussed,
respectively. In this note the L-fuzzy (primary)
submodule of a R—module M is defined and in this regard,
the product of a L-fuzzy subset of R and a L-fuzzy
subset of M is given. It is shown that (4, Definition
5.1] and (7, Definition 3.1} are special cases of

L-fuzzy primary submodule definition given in this note.
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A necessary condition for being a L-fuzzy primary
submodule of a L-fuzzy module is given and by an example
it is shown that this is not sufficient. A
characterization of L-fuzzy primary submodule of a

module M is given.

2. Preiminaries

We fix L=(L, < ,y .N) as a completely distributive
lattice with a least element O and greatest element 1.
We write "sup" and “inf" for ", and "A", respectively.
If a,be L we write b 2a iff a< b, and a>» iff a2b and
azb. For a nonempty set X, let F(X)={A|A is é L-fuzzy
subset of X}. Then for A,Be F(X), we write A€ B iff
A(x)< B(x) for all xe X. A 2B iff B€ A, and Ac Bliff
A< B and A=B. By a L-fuzzy point x_ of X; xe X, re L, we

r ify=x

mean X € F(X) defined by xr(y)=-{ and we
0 ify=x ,

write xre X. 1If xre X and xrs Ae F(X), then we write
X € A. If A= X, by X, € F(X) we mean the characteristic
function defined by

1 if xe A
x (x)={
A 0 if xe A

From now on R is a commutative ring with identity
and M is a unitary R—-module.
Definition 2.1. Let Ae F(R), then A is called a

L-fuzzy left (right) ideal of R iff for all x,ve R,



(i) A(x-y) 2 inf(A(x).A(Y))

(ii) A(xy) 2 A(y) (A(xy) Zz A(x))

A is called a L-fuzzy ideal of R iff it is both
L-fuzzy left and L-fuzzy right ideal of R.

Definition 2.2. Let upe F(M), then u is called a
L-fuzzy left R-module of M iff for all re R, and x,ye M,

(i) H(x=y) Z inf(u(x),u(y))

(ii) u(rx) 2 p(x)

(1i1) x(0)=1

We let I(R) (I (R)) and S(M) be the set of all
L-fuzzy (left) ideals of R and the set of all L-fuzzy
left R—module of M, respectively.

Lemma 2.3. Let M=R, then ue S(M) iff ue IL(R) and
u(0)=1.

Definition 2.4. Let Ie F(R) and Be F(M). Define the
composition and product 1IoB,IBe F(M), respectively as
follows: For all we M.

sup inf(I(r),B(x))

w=rx ; for some re R, xe M

(i) IoB(w)=
o if wzrx ; for all re R, xe M.
sup inf(I(r ).,....,I(r ).B(x ),-...,B(x ))
m [ m 1 m
(ii) IB(w) =¢ w= Y% r.x. for some me N, r e R, X € M
izg m
0 if w2 ¥ rox. for all me N,
i=4



For ue F(M), the level subset H, of u is defined as
H, ={xe M| p(x) = t}; te L.

Theorem 2.5. Let ue F(M) and x(0)=1. Then ue S(M)
iff for all te L, B, is a left R-module of M.

Definition 2.6. Let Pe I(R) be nonconstant. P is
called L-fuzzy prime ideal iff for any A,Be I(R),

ABE P implies either A< P or B& P.

For Pe I(R) and pue S(M) we let P, ,={xe R| P(x)=P(0)}
and u,={xe M| u(x)=1}.

Definition 2.7 (7, Definition 3.1}. For a
nonconstant Qe I(R), then Q is called a L-fuzzy primary
ideal of R iff for any x .y € R ; xve Q implies either
X € Q or y: € Q ; for some ne N.

Definition 2.8 [3,Proposition 3.5]). For A,Be I(R).
Then define (A:B)e I(R), by

(A:B) (x)=sup{C(x)| Ce I(R), CoBs A}.

Definition 2.9. (7, Definition 3.5]. Let Ie I(R),

define Rad(I)e I(R) as follows:

ne : if there exist some L—fuzzy prime
Rad(1)={ P21 ideal P21
Xg otherwise

3. L-fuzzy primary submodule

PDefinition 3.1. For u,ve S(M), v is called a
L-fuzzy submodule of u iff ve u. In particular if u=xM,
then we say v is a L-fuzzy submodule of M.

Definition 3.2. Let » be a L-fuzzy submodule of u.



Then v is called L-fuzzy primary submodule of u iff for
any r € R, X € M;
r x € v implies x e v or rr u € v for some ne N.

Remark 3.3.The following theorem shows that Definition
3.2 is a suitable one for L-fuzzy primary submodule.

Theorem 3.4. If M=R, then wve F(R) is a L-fuzzy
primary submodule of M iff v is a L-fuzzy primary ideal
of R.

Remark 3.5. Theorem 3.4 and Definition 2.8 show
that Definition 3.2 is a generalization of Definition
2.7 and [4, Definition 5.1}.

Theorem 3.6. Let » be a L-fuzzy primary submodule
of u. If vER te L, then v, is a primary submodule of
H, -

Remark 3.7. The converse of Theorem 3.6 is not true
as the following example shows.

Example 3.8. Let L=[0,1], M=R=2. Define u,ve S(M)

as follows:

1 if xe 42 1 if x=0
H(x)=¢1/2 if € 22-42 , v(x)=421/2 if xe 42-{0)}
] otherwise 0 otherwise.

By some manipulation we can see that for all te (0,1],
v, is a Primary submodule of H, - But » is not a L-fuzzy
primary submodule of u, because if m=5, n=4, t=1/3,
s=2/3; then mn_€v, but naz v and nfus v for all ke NN,

Corollary 3.9. Let v be a L-fuzzy primary submodule



of p, and v, =u, . Then v, is a primary submodule of u,
Corollary 3.10. Let » be a L-fuzzy primary
submodule of M. Then v, is a primary submodule of M.
Theorem 3.11. (a) Let N be a primary submodule of
M, and o« a prime element of L. Then the L-fuzzy subset
ve F(M) defined by

1 if x¢ N
v(x)={ (1)
ot if x«= N

is a L-fuzzy primary submodule of M.

(b) Conversely any L-fuzzy primary submodule v of M
can be obtained as in (1)
By some manipulation we can see that for all te (0,1],
v, is a primary submodule of H, - But » is not a L-fuzzy
primary submodule of u, because if m=5, n=4, t=1/3,

8=2/3; then m n e» Ikp ovn X p |Cous v, Ce I(R)},then

I=(v:u).

Remark 3.15. Let M=R and u,ve S(M), so u,ve I(R).
Then, by Theorem 3.14, (v:u) reduces to Definition 2.8.
Hence Definition 2.8 1is a special case of Definition

3.12.
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