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In this paper, we propose the concept of regular fuzzy measurable
spaces and investigate the relation between the regular fuzzy measur-
able spaces and the classical measurable spaces. The representation

theorem of regular fuzzy measure spaces is proved.
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1. Introduction and Preliminaries

In the paper(3], Butnariu introduced the concept of additive measure
of fuzzy sets (called F-measure for short in this paper), which is
somevhat different from those studied by Zadeh (11, Sugeno (8], Klement
(9], Ralescu and Adams [7]. The aim of this paper is to propose the
concept of regular F-measurable spaces and demonstrate the represen-
tation theorem of F-measure on the regular F-measurable spaces.

Throughout this paper, X will denote a non-empty set and Bo the O=-
algebra of Borel sets of [0, t]. Let F(X) = {f: X ~»[0, 1]}, and P(X) =
{Lg: E<X]}, vhere I is the indicator function of B« The elements of
F(X) are called fuzzy sets in X and denoted by AyByCyece « The oper-
ations of union, intersection, inclusion and complement of fuzzy sets
are adopted in the sense of Zadeh([2] and, that of sum @ and differ-
ence (® of fuzzy sets are adopted in the sense of Butnariul3] .

Definition 1.1[3]. Iet ¥ be a class of fuzzy sets. If P satisfies



the following conditions:
(1) Iy cr
(2) X, BEF—>AE@BcC?
(3) {8, neN} S P =) &, € F

Then P is called a g -edditive F-class, and (X, P) is called a F-meas—

urable space.

Definition 1.2[3]. Let (X, F) be a F-measurable space and m be a
non-negative functiom on P with the (=additivity: {A , neN le P, and
Tnen A (x) €1 (Vxex) = m( ®neNAn) = Shen 0(A )e Then m is called
a P-measure on (X, P), and (X, P, m) is called a F-measure space (abbr.

FMS).

Many properties of FMS have been investigated by Butnariu in(3], 4]
and [5]. For the convenience of the further diseussion in this paper,

we make a note on the following remark:?

Remark 1.3. Let (X, P, m) be a PM3. If we set B_= PNP(X), F_= {Bs
EcX and I; € B}, and define m : B —> [o, +oo] by m (E) = m(Ip)
for each E € 'i"k, then 'fk is a g-algebra of sets and (X, Tk’ mk) is

a classical measure space (abbr.CMS).

Definition 1.4. Let (X, P, m) be e FM3. The megsurable space (X, F_)
will be called the kernel of the F-measurable space (X, P), and the
eMs (X, fk, mk) will be called the kernel space of the FMS (X, B, m).

/

2+ The mguiar F-measurable Space.and Its Representation

Definition 2.1. Let P be a class of fuzzy sets and Q(P) the (O -ael-
gebra generated by the class of sets {A'1 B): @GBO, AcP), 1.0. O(B
= o-(A“‘()o)g A€P). We will call O(F) the (-algebra induced by Fe



Theorem 2.2. For any P<F(X), (O(P) is the smallest (-algebra
which makes each A€ P is QLP)-measurable. '

Proof. Straightforward.

Definition 2.3 A (~additive F-class F is said to be regular if
it satisfies the condition:
vaelo, 11, VE € O(F) == CLIzE ? (241)
A F-measurable space (X, P) or a FMS (X, P, m) is said to be regular
if P is regular. The regular FMS is abbreviated to "RFNS".

In the following content, for any @ -algebra of sets «d,we set F(A)
= {A€F(X): A is s-measurable} and A= {15¢ B A},

Theerem 2.4. Let | be a (J—algebra of sets. Then F(sd) is the
smallest regular (G-additive F-class containing .ﬁ’ and
O(R(A) = A : | (2.2)
We will call (X, F(4)) the F-measurable space generated by the

measurable space (X, «).

Proof. Frist, by theorem 2.2, it is easily to prove that (2.2)

holds. Next, it follows from the properties of measurable functions
6] that F(d) is a O’-advditive F-class coﬁtaining A+ In order to
prove that F(QA) is regular, we note the fact that for each a0, 1)
and VEEA(A)) =, Ip and OLI, are sl-measurable, i.e. oL.IEGF(.A)..
Hence F(#) is regular. Finally, suppose P' is an arbitrary regular
O -additive F-class containing A, we will prove F(J) & P'. In fact,
for each A€F(sd), we have that A = limit A , where A n@i:i:} .
13:(Ln) and ngn)w [xex: (1-1)/2"<A(x) €<1/2"}. A €F(A4) means thit A
1s sl-measurable, so Ein)e & . Since P' is a regular (-edditive F-
class containing 4, we know that IE:(ln) €F' and (1-1)/2%.1g(n) € P'.

i
Consequently, Aner' and A = limitnAnE!'. Hence F({d) = P'. The proof



of theorem 2.4 is finished.

Theorem 2.5. Let F be a regular (¢ -additive P-class. If we set I* =
P(G(P)), then ¥ = #* = K¥,) ana O(P) = O(P*) = F,.

Proof. It is obvious that PSPF* and F(R )=P. On the other hand, we
have 6‘5%;1‘, i.e. F is a regular (--additive F-class containing
&P, Rt by theorem 2.4 we mkow that F* is the smallest one, therefore
we get & P*, So P = P*, Moreover, for any A€P, A is G(P)-measurable
i.e. for all Belb,' we have A'1(B) € O(P®). Therefore IA"1(B)€’*= r.
Consequently, IA-1(B)E ¥, and A-1(ﬁ) €¥, i.e. A is ¥, -measurable.

This means AGF(fk):. Hence we have !‘;F(fk) and, so P = F(fk). Pinally,
o(®) = g(F*) = B_ follows easily from ¥ = F* = KE,).

Theorem 2.5 shows that every F-measurable space (X, F) can be gener-

ated by its kernmel (X, Fk)o

5. The Representation Theorem of NFNS
Theorem 3.1. Let (X, Wi, u) be a CM3 and (X, F(.4)) be the regular
F-measurable space generated by (X, W), If we define m: MAd) —>
[0, +] by
m(A) = §; Adu (vaeRr(A) ) | (3.1)
Then (X, F(xl), m) is a RFMS.

Theorem 3.2. Let (X, P, m) be a RFMS and G(P) be the G=-algebra
induced by P, If we define u: (J(P) —>»[0, +c0] by
u(E) = m(Iy) (VEeo(P) ) (3.2)
Then (X, O(P), u) is a CMS.

The proofs of theorem 3.1 and theorem 3.2 are straightforward.

Theorem 3.3. Every RFMS (X, P, m) can be represented by its kernmel



space (X, L. mk) with
m(A) = fx Adm, (vAer) (33)

Proof. By theorem 3.2, we nkow that (X, CO(F), u) is a CMS, where
u is given by (3.2). But CQ(P) = fk from theorem 2.5 and u(E) = m(IE)
= mk(E) (VE e'fk ), S0 we only need to prove (3.3). In fact, for any
oLefo, 1] and E € O(P), OLI; €F folloes from the regularity of ? and
m(Ot.IE) =0olem(Iy) = Otem (E) folloes from the cotinuity of F-measure me
For any A€ P, we have AnﬁA, where An as in theorem 2.4. By the defini«.

tion of the integrals with respect to m.y we get
- : _ 2" i1, (n)
Sy Adm_ = limit §y A dm = limit [377 zn’mk(Ei )]

- 1mit 572 w2k 1 (0))] = linit (&) = n(A)
- i=1 on’ Eg - nB\A, ) =
Hence (3.3) holds for all A€P. This ends the proof of theorem 3.3.
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