INTEGRAL REPRESENTATION OF FUZZY POSSIBILITY MEASURES Radko MESIAR

Slovac Technical University Radlinského 11 813 68 Bratislava Czechoslovakia

Short communication

Let (X, \mathcal{A}) be a measurable space and let $F(\mathcal{A})$ be a generated fuzzy \leftarrow -algebra, $F(\mathcal{A}) = \{\mathcal{M}, \mathcal{M}: X \rightarrow [0,1]\}, \mathcal{M} \text{ is } \mathcal{A} \text{-measurable}\}.$ In what follows we deal with Zadeh's fuzzy connectives. A fuzzy probability measure [2] m is a mapping, $m: \mathbb{F}(\mathcal{A}) \longrightarrow [0,1]$, such that

(1)
$$m(0_X) = 1$$
 and $m(1_X) = 1$

(2)
$$\forall \mu, \eta \in F(A): m(\mu \vee \eta) + m(\mu \wedge \eta) = m(\mu + m(\eta))$$

(3) $\forall \{\mu, \} \in F(A), \mu, \gamma : m(\mu,) \uparrow m(\mu)$.

The simplest example of such fuzzy probability measure is due to Zadeh [5],

(4)
$$m(M) = \int_{X} M dP$$

where P is a classical probability measure on (X,A). In general we have the following integral representation due to Klement [2].

THEOREM 1. (Klement) m is a fuzzy probability measure on (I.F(A)) if and only if there exists a unique probability measure P on (X.A) and a P-almost surely determined A -Markov kernel K such that

(5)
$$m(M) = \int_{X} K(x,[0,M(x)])dP(x)$$

Of course for crisp events A we get $m(1_A) = P(A)$. Note that $K: X \times B_{[0,1[}$ R is called an A-Markov kernel if it satisfies the following conditions:

- (6) $\forall B \in \mathfrak{B}_{[0,1[}:K(.,B):X \longrightarrow R \text{ is } \mathcal{A}\text{-measurable}$
- (7) $\forall x \in X : K(x,.): \mathfrak{B}_{[0,1[} \longrightarrow \mathbb{R} \text{ is a probability measure}$ on $\mathfrak{B}_{[0,1[}$.

Zadeh in [6] introduced the notion of a possibility measure \P where addition is replaced by the supremum (maximum). Similarly, a fuzzy possibility measure Pos corresponds to a fuzzy probability measure (in the same way as a possibility measure corresponds to a probability measure), Pos:F(\Re) \longrightarrow [0,1],

- (8) $Pos(0_X) = 0$ and $Pos(1_X) = 1$
- (9) $\forall \{m_n\} \subset F(A): Pos(V_{m_n}) = sup (Pos(m_m))$.

The simplest example of such fuzzy possibility measure is again due to Zadeh [6],

(10)
$$Pos(M) = \sum_{X} MoT(\cdot)$$

where $\{$ is a Sugeno's integral (see e.g. [1]) and $\mathbb T$ is a possibility measure on $(X,\mathcal A)$. Here we suppose X be a finite or denumerable space. Recall that Sugeno's integral of $\mathcal M$ is

(11)
$$\begin{cases} \mathbf{v} \cdot \mathbf{N}(.) = \sup_{\mathbf{a} \in [0,1]} \min(\mathbf{a}, \mathbf{N}(\mathbf{M}_{\mathbf{a}})) \end{aligned}$$

where $M_a = \{x \in X, \mathcal{M}(x) \ge a\}$.

For X finite (denumerable) we have obtained the next result .

THEOREM 2. Pos is a fuzzy possibility measure on (X,F(A)) if and only if there exists a possibility measure T and a T-A-Mar-kov kernel K such that

(12)
$$Pos(M) = \begin{cases} K(x,[0,M(x)[)o\Pi(.)) \end{cases}$$

K: $X \times B_{[0,1]} \longrightarrow R$ is called a $\mathbb{T} - A$ -Markov kernel if it satisfies the following conditions:

- (13) $\forall B \in \mathcal{P}_{[0,1]}: \mathbb{K}(.,B): \mathbb{X} \longrightarrow \mathbb{R} \text{ is } \mathcal{A}\text{-measurable}$
- (14) $\forall x \in X : K(x,.): \mathfrak{I}_{[0,1]} \longrightarrow \mathbb{R}$ is a probability measure on $\mathfrak{B}_{[0,1]}$
- (15) $\begin{cases} K(x,[0,1]) \cdot T(\cdot) = 1 \end{cases}$.

For the proof and more details see [4]. Note that we have some kind of the uniqueness in the Theorem 2. More concretly, for any fuzzy possibility measure Pos we have a unique possibility measure \mathbb{R}^* and a unique \mathbb{R}^* - \mathcal{A} -Markov kernel \mathbb{R}^* such that

- (16) for any **T** ≥ **T***, (12) holds for K*and **T**
- (17) for any $K \ge K^*$, (12) holds for K and Π^* if and only if for all $x \in X$, $K^*(x,[0,a[) \leftarrow \Pi^*(x))$ implies $K^*(x,[0,a[) = K(x,[0,a[)$.

REFERENCES

- [1] Dubois D. and Prade H., Fuzzy Sets and Systems: Theory and Applications. Academic Press, Series Math. in Sc and Eng., No. 144, New York, 1980.
- [2] Klement E.P., Characterization of finite fuzzy measures using Markoff-kernels. J.Math.Anal.Appl. 75 (1980), 330-339.
- [3] Klement E.P., Fuzzy Measures: Classical Approach. In: Systems and Control Encyclopedia, editor Madan G. Singh, Pergamon Press, Oxford, 1989, p.1819-1821.
- [4] Mesiar R., Characterization of possibility measures of fuzzy events using Markov-kernels. To appear.
- [5] Zadeh L.A., Probability measures of fuzzy events. J.Math. Anal.Appl. 23 (1968), 421-427.
- [6] Zadeh L.A., Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1 (1978), 3-28.