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This paper deals with theoretical aspects
on operations for probabilistic sets and
their distribution function representation.
The considerations are illustrated by
means of several examples.
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1. Introduction.

As known there are several investigations where attempt to combine
fuzziness and randomness factors into one concept are considered
{ 17,12,10,11,9 1. Here we focus our attention on probabilistic sets
in the sense of the work [9]. Logical connectives applied to proba-
bilistic sets and applicational aspects of this sets in decision
making processes were investigated by [ 3 - &6 1. We are interested to
get some generalization operation for probabilistic sets and distri-
bution function representation of them. In consideration of the ope-
rations for probabilistic sets we shall wuse triangular norm
{a t -~ norm for short), triangular conorm (t - conorm) and averaging

operator roncepte [ 13,15,7,8 1.
2. On probabilistic sets, and t-~norms, t-conarms.

Let (_Q., 5?), p ) a probability space,U is universe, via
A(u, w)| denctind the defining function A:Ux QL — [0, 1]
of probabllistic set A . For each fixed Ue U defining funct-
ion is dehoted by A (u) and considered as the random variable on

the probability space.




In this situation for characterization of probabilistic sets

distribution function is introducing, i.e.

[—;\(u)(z} =B ®=P{w: A(uw)<z})

for each 2 € [0,17].
1t ie known [ 14,7 1 that ¢t~ norms ( resp: ¢t~ conorms ) provide a
good model for fuzzy -set -theoretic intersections ( resp: union ),
Therefore, let us recall the representation for t- norm and t- co-
norm [ 1,2 1. Let two-place real function

H: x99 > 7, 7:[‘&,&], o< a<Bg®
satisfies the following properties: a)associativityy b)commutativi-~

ty; c)non-decreasing in each argument;d) H(O Z) 2

Function 8; Eo) 1] —» EO,%]. ( resp: function ;e [o. 1]~ Eo B])
is a single-place continugusly strictly increasing ( resp: decrea-
sing ) one.

Theorem 2.1. The two-place real function

1:Co,4)x [o,4]— o, 17,
LGy, %)= g Cmin (g0, H (6=, §(zo))

is a t— conorm,.

Theorem 2.2. The two-place real function
T [014—] X Eo/-(-l '_’I:O:L],
T (2, %)= &7 (min (£02), H(F (=, £ D))

is a t - norm.



Further,if 1 (X,X)= 1 (L Cheed, n(x,)>))
and conversely L (x, , 2= h (T (l’l(x,), h.(%))) ,

thenT, __L_ are said to be dual in regard to strong negation
n L 15,7 1.

Similarly,as in fuzzy sets theory various operation can be presen-—
ted for probabilistic sets [ 3-4 1. We shall use t- norm and t- co-
norm concepts in further consideration about operation for probabi-
listic sets. Thus,substituting of the arguments of t- norm ( resp:
t- conorm )'x;el'.'o, 4] for’\‘i(u,w) , intersection ( respt union )

of probabilistic sets ;4,, Az.,--»; A’K will be given by equations:

TCA“A;)...,A!CS (U,w> =

-1
=4 (min (0, & (LA mw) ..., £ Acl(u:)))

A (At,Akz,.. " Ag)(‘u,wB =

- g“(man (§0), 6 (g (As ()., g (Ax (D))

for all ue U, wedl,
where G" is a k- place semigroup operation on [ o,b 1 having O as
unit and properties a),b),c).

Now,as some particular cases we obtain
T (A Az, ., Ax) (Ue0)s

K
= £ (min (Lo0), L(r1cs+a LA (ued) JR)) -1Y)),
i=q



_L) (Ai, Az,..., Alc> (U, wd=

= gt Cmin (300, L ( %‘ (4+2 GCA; (1,w))/ () - L))

for all 'ue:U, we ).

3. Distribution function representation
of operation based on t- norms and t- conorms.

Let us fix a pointue U and denote A‘- (u) by X,: . As known

from probability theory

D@

E‘.Kca') = J I tle...xm (xlale"'ox“>dz{ ..dxy ,
D, (®

where D, (2) ( raspt Dy () ) is the region of integration being

determined as

DLC3>=-{(34,,&L;"')mK)" "L(ml’zza'")xh>< 8})

Da (2)': {be al.,---, xn): TC“;,¢':,...,°¢<3< 2} ,

('th, ) is a joint probability density function of the

Y

1.'.XK
vector (X_.L, Xe,..., Xie) >

"L‘( = _L(Xg_) )(;,...,)(x), TK.=TCXL,X1,...,XK> .



Theorem 3.1. If -‘-K,TK are dual in regard to strong negation

)= L-2¢, then
R @+ Fy U-8=4,

where "L/K= _L(.L-X,_, . 1-Xk).

Proof. With the assumption of the theorem we obtain
P (-2d= P(L(4-Xy, 4-Xa,.., 1-Xe )< 1-2) =

= P(TCX, Xy, XKD 2 2) = 4= F (@),

Corollary 3.1, If ..LK,T;( are dual in regard to strong nega-
tion ()= 4 - and random vector (X4,X,,...,XK) is uniformly

distributed in the region (0$X€ L, .., Og X ¢ L) i.e

b

= 1-2)=
r—TK(%)+ F_L‘( )= 4.

(3, XD = { 1,(0sTs4,. . 05,5 L)
29 -

1 XK 0) otherwize .

then
Proof. Taking into account that if a random vector (Xi,)(,_,...,)(t>
is uniformly distributed ,then (i"x,,..., i-—XK\ is also uniformly

distributed, we can conclude that the following ‘relationship holds

true

F-L,KL%)z F.LKC.L)‘
Example 3.1. Let
T, =T, %)= min (4,%+X),

1,= 1 (% X,)= max (0O, X,+ Xp-1)



and vector (X‘, X,.) is uniformly distributed. In ( & ) has been
2
proved that [ 2)\= L
.Lac ) 2 2 .
80 directly by the corollary 3.1.

Lo an?
Fﬂ;"h 1~ % (42,

Further the distribution function of the as result of various

operation on probabilistic sets will be founded by using formulas

(5 )
2 "o (Zyxp)

F (= jda4 S""X,Xz (34, X2) a’ftz,
o o

-L( x‘ ,Y,_)

(‘7 +%q)

T(x,;(.)&) JCA" J%x (2,5 dx, + Jd“ j“Pxx( Jﬂ'x&

b

but here Xy = g\‘ (2,%,) (resp: %= &a(i, X,) ) is determined from
4 -4
the equality i:g (H(gcxt),g-(x;))) ( resp: 2“.((” ({(2',), {(x“)))).

Let us consider the case when probabilistic sets A,,A;,...,Alc
are independent ( 4 ),i.e. are such that for all point % €& U cor-

respondingly random variables are independent.

Iin this case

2
F (2)= K\Pxi () szCZ, (2, dx,

"L‘(xbxt)



5 1 (BT

FLon, Ly j ¥, (e Soqjxg(x’)“

¥ an (&4 (ﬂi (2, I‘D, I&)) dxa.) alacl R

which are specul cases follumhg the result
T
F &) S\PX CHYCHNE j ‘Vx (acx_,)F C"’OGI"C et D" )C/ac

where +1= 2, ";i = 2\1 (tioi,:ri—t)-

Bimilarly,

Ercx‘h)(a)s F @+ 541,( (ar:,) C‘f» Cz,acl»a’x“

XL
ToToumy P K0k Choex))d,+

{
+ S"Px C"’C»( S \PXa.(x") F (e‘ (e‘*cz x‘)
2 ! R.(2p

x,)) dxy ) a’-"-'t ’

which are special cases of the result

L
E- (a-.-in(z)-r Z_ S\P =) ( S ‘an(ac,_} (..
< 2,

=9 ‘2'1

(g\P o0 (R doe ;) dabegYobe,

2

where Z,w2, ;= ‘2* (‘zi.g,x;’.d}.



Note, if this .L,c’ TK are dual in regard to N(2¢)= 4 -2¢ ,then

in accordance with theorem 3.1.
2D+ F 1-2)=
ET'.‘ (&P, 1y ( dY=41,
The same results can be obtained directly. Indeed,first for K=2

4
=K, @+ [, GO (A%

F
T(4-X), 4-Xg) A

L
- 1- jqxﬂi () (4= Fy huce, oy dee,
2

So far as A-‘l (2,2 = i-A’ (1-2, 1- , ), stating &'= 4- x,

and taking into accound that i-— F (4—2) = FX CEB, we have
i=Xg 2

{
1- J‘;}'-x‘ (2> (4~ i:-X,, c1-4, (1-2,4-2,))) dee, =

4
= 1-— qulx! (f’xp) F—x’.(i\i (1"'!, 1.-&1)) dm-i =

-2
- b (-2 Y8 = 4- F C1-2)
iy L{\Px‘(s) R, Ch -2, 53 E ok

~ Further Té:TCi'x,,,..., 4"XK> =

=T =%, , T G-xg L, 4-%) =T (-x, 1= L 0%, X)),

Now,using the previoua case one can write
i-2

F, (= t- | K, = F

a Xa, o)

(b, C1-2 x))ahe, =
©)

Y i"’i Cl-i).

K
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