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Abstract: Based on the distinction between two types of probabilities:
normal and logical probabilities, Shannon entropy equation and Shannon
cross—entropy equation are reformed. New equations do not require that a
source or a destination of information must be a set of disjoint events,
and, can be used to measure semantic and sensory Information. The
membership function of fuzzy sets and the discriminate probability of
gsenses are brought inte the new cross—entropy equation. Some examples of
calculating semantic and sensory information are provided.
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1. INTRODUCTION

The Shannon theory has made great successes in electronic
communication{1]; yet, it is usually powerless in communications with
language and with sensory organs. To resolve the problem of semantic
information, researchers proposed many methods[2-6] that were inspiring
more or less; however, these methods are difficult to be applied to
practice. It seems to me that the main cause is that these methods still
follow the forms of Shannon equations; yet, these forms are Iimperfect to
wider extent and need to be improved.

1. REFORM OF SHANNON ENTROPY EQUATION

A. Distinction Between Two Types of Probabilities

There are two types of probabilities of a sentence or a proposition.
One is the normal probability in which the sentence is selected. Another
is the logical probability[2] in which the sentence, or more properly the
proposition the sentence states, is judged true by many language users.
First we define the logical probability in terms of set theory.
Suppose that X and Y are two random variables taking values xi
(i=1,2,...,N) in set A and y;{(}=1,2,..M) in set B; A is a set of disjoint
events: B is a set of joint sentences and the disjunction of all sentences
in B is true; S(ys) is a subset over A, every sentence it includes makes
ys be true. We define that the logical probability of ys:

Q(ys) = )3 P(xi) {(2.1)
X1 €& S(ys)

Since some sentences in B may be joint, the sum of logical
probabilities of all y; in B may be greater than 1; in other words, the
logical probabilities of sentences in B may not be normalized. However,
their normal probabilities are normalized.



We use an example to explain distinction and relation between normal

probability and logical probability. Let a set A = {non-rain(xi), light-
rain(xs), heavy-rain(xs)}, events in which are disjoint, and a set B =
{"It doesn't rain"(NR), "It rains lightly"(LR), "It rains heavily"(HR),
"It rains"(RA)}, some sentences in which are joint. Every Time, a man only
selects one of four sentences in B to describe one of three different
weathers. Hence y; has normal probability P(ys) and logical probability
Q(ys); and

Iy P(ys) =1 and I5Q(ys) 2 1. (2.2)

Generally, P(ys) £ Q(ys); P(ys) = Q(ys) only when y; is disjoint with all

other sentences. Some times, P(RA) may be less then P(LR) or P(HR) because

the man selects "It rains” only when he does not know in detail a weather

and therefore cannot determine which sentence, "It rains lightly" or "It
rains heavily", is better.

B. e non Entro uation

Clearly, ys5 being true or being selected means X happens in S(yj).
By the defimition of amount of information, the information transmitted by
ys is determined by prior probability, Q(y;). and posterior probability,
which is equal to 1, of event that X takes place in S(yj), l.e.

Kys)= log{1/Q(ys] = - logQ(ys). (2.3)

Here I{y;) shouldn't be -logP(y;), otherwise there will be a wrong
conclusion that RA may give more information then LR or HR. However, P(yj)
is also useful. By the definition of average amount of information, we
have

H(Y) = - I3 P(ysiogQ(ys), (2.4)

If any two sentences in B are disjoint, then the above equation will
revert to the Shannon entropy equation.

C. Gener 8 on_Entro Egquation for Sensory Information

We turn next to sensory information. Suppose there is a set , A =
{X1,X2,...,xn}l, of colours and the corresponding set, B, of sensations; yi
in B is the function of xi, .. y1 = y(xi); a man cannot discern two
celours that have adjacent subscripts because his visual discrimination is
limited. Since y; determines the set S(y;) that includes all xi that
cannot be distinguished from xs by the man's eyes, sensation y; also has
two types of probabilities. One is the normal probability P(yj;) = P(x;);
another is the logical probability Q(yj); for example,

Q(y2) = P(x1) + P(x2) + P(xa).

Similarly, using (2.4) we can turn out the average amount of information
transmitted by Y.

Obviously, if the visual discrimination is high enough, Q(Y) is equal
to PY) and H(Y) will revert to the Shannon entropy. So, (2.4) may be



called a generalized Shannon entropy equation or a generalized entropy
equation.

III. REFORM OF SHANNON CROSS-ENTROPY EQUATION

Actually, when x1 is given, logical value or logical condition
probability of y3; is generally fuzzy, l.e. Q(y;]m) varies in interval
[0,1]; the confusion probability of a sensation y; with y(x1) is similar.
Hence, we need a new cross—entropy equation.

A. Deducing Genersalized Cross—entropy Equation

Suppose A is a set of disjoint events, such as, a set of some
weathers; B is a set of joint sentences. When x3 in A(i=1,2,...,N) is
given, the logical condition probability of y; in B(j=1,2,... M) is
Q(yﬂm). which is equivalent or similar to "membership function” in the
fuzzy set theoryl{4]. By definitions in probability theory,

QU) = I QUG |D), (3.1)
PU) = & PAOPQ|D), (3.2)

where Q(), Q(1), and Q(j|1) are shots for Q(ys), Q(xs), and Q(yg[xz). the
others are similar. We also have

QU.l) = Q)QU|D), (3.3)
P(.1) = PAP(|L). (3.4)
Q) = QU.1/QW), (3.5)
PU[§) = PEI/PQY). (3.6)

Now, y3 ascertains a fuzzy subset S(y;) over A; the logical
probability Q(ys;) 1is prior (normal) probability of the event that X
happens in S(ys); the Q(ys;]|X) is posterior probability of the same event
after yj is judged true. By the classical definition, the amount of

information transmitted by yy from X = x1 s -
(xiys) = loglQ(ys| X=x1)/Q(ys)] = logIQ(|1)/QW)I. (3.7
Since A is a set of disjoint events, Q(i) = P(i); Q(i])) = 'P(i|j). Hence
QU1/QQ) = Q(l|j)/Q(l) = P(1]3/PQ); (3.8)
xuys) = log[P(i]))/P(D)] (3.9)

Equation (3.9) can be seen in the classical information theory. It means
that I(xyy;) is determined by prior and posterior probabilities of xi.

Further, the average amount of information transmitted by ys from X
is

KX:y9)= &1 PA|IN(xays); (3.10)
and the average amount of information transmitted by Y from X is |

I(X;Y)= I35 POI(X;y))
= I3 It PQ,1D1ogiQU.1)/IQ(Q
= H(Y)-H(Y |X)



= H(Y)-H(X|Y) (8.11)
in which H(Y) and H(X) are determined by (2.2), and

Iy & P(.1)logQG ), (3.12)
Iy &1 P(.i)logQ(i|)). (3.13)

H(Y | X)
H(X|Y)

These equations are similar to those in the ‘classlcal information theory.
Since A is a set of disjoint events, H(X) and H(X'Y) become the Shannon
entropy and the classical condition entropy; (3.11) becomes

XY= Iy B (PQY/QAIP(IQU | DiogiQU | 1/QY)] (3.14)
which is a practical equation we will use later.

Actually, (3.9)-(3.11) are also suitable to those cases in which A is
also a set of joint events. A possible case is that A is a set of
sentences like "The temperature is about 10(or 11, 12, ...) degree
Centigrade” and B is a set of sentences like "It is cold(or warm, hot,
..)". In this case, I(X;Y) is the cross—information between two sets of
concepts or propositions instead of two sets of physical signals.

From (3.14), further, if y; is also a set of disjoint events, then

- PY) = QU), PU|D = QUji); (3.14) will regress into Shannon cross-
entropy equation. So, (3.11) may be called the generalized cross—entropy
equation. The Shannon cross—entropy equation can be thought its special
case as both the source and destination of information are sets of
disjoint events so that two types of probabllities are equal.

The H(Y-| X) 1is a generalized condition entropy and can also be called
a fuzzy entropy. We can prove that if the any sentence in B has no
fuzziness, i.e. Q(jll) is equal to 0 or 1, then

H(Y|X) = O and X;Y) = H(Y); (3.15)

if the sentences in B are extremely fuzzy, l.e. Q(jll) does not vary with
i, then :
H(YIX) = H(X) and I(X;Y) = 0. (3.18)

These means that, for the given sentence entropy H(Y), the clearer the
language, the more the information.

If B only includes two complementary sentences and all x3 In A have
equal probability 1/N, then H(Y|X) will regress into Deluca and Termini's
fuzzy entropy{6]. Here different from ({68] is that H(Y|X) is posterior
entropy and only decreases instead of ylelds information.

IV. APPLICATIONS OF NEW CROSS—-ENTROPY EQUATION
TO SEMANTIC INFORMATION

A. Calculstion of Semantic Information




Now we use (3.14) to calculate cross—information between the set, A =
{X1, Xa2, Xa}, of weathers and the set, B = {yi(NR), yz2(LR), ys(HR),
y4a(RA)}, of sentences.

We use a matrix, Q, to represent the set {Q(j|i)l, an element at row
i and column j of the matrix 1is Q(j[i)(i=l.2.3; jJ=1,2,3,4). There are
three possible {Q(|i): ‘

1 0 0 0 .9 0.1 0.0 0.1 : .8 0.2 0.0- 0.2

@= (0 1 0 1).. @& = (&.1 0.8 0.1 o.o). Q= &3 0.6 0.2 o.s).

0 0 1 1 0.0 0.1 0.9 1.0 \0.0 0.2 0.8 1.0
They indicate that the coding and decoding in linguistic communication is
clear, fuzzy, and very fuzzy in order. Let all x1 in A have equal
probability 1/3. Then we calculate out Q) = 1/3 for j=1,2,3 and Q(4) =
2/3 for each (QU|i)l. About the normalized probabilities of all y; ,
there are limitations:

P(y1) = Q(y1), P(ys) £ Q(ys), for §j=2,3.4.
There are the values of I(X;Y) for different mmm and P(RA).

P(RA) _ KX:Y)
Q QG Qs__
0 1.683 0.966  0.647
2/9 1.363 0.845 0.677
2/3 0.918 0.606 0.437

Note the maximal number 1.685 in the table is just H(X) = Logs3.
The results tell us that the clearer the sentences, the better; the less
the normal probability of sentence RA, which is implied by other
sentences, the more the information.

B. Fuzzy Logic Operatons for Logical Condition Probabilities

In practice, we needn't use statistics to obtain all logical
condition probsbilities Q(jli). For example, in the above case, we can
first obtain Q(LR|xs) and Q(RA|x1) by statistics and then reach Q(NR|xi)
and Q(HR|x1) by calculations:

Q(NR | xs)
Q(HR | x4)

1 - Q(RA‘X!).
Q(RA[xt) -~ Q(LR|x4).

I have ever used an analog logical algebra in establishing a
symmetrically mathematical model of colour vision[7,8]. By this algebra,
we can define a fuzzy set algebra in which the all laws in Boolean algebra
are still tenable and calculate out the membership function of any fuzzy
set function(expression) from the membership functions of some atomic
fuzzy sets. If we calculate the condition probability Q(j]i) of a compound
gentences as the membership function of a fuzzy set function, the resuit
will be approximate to that by statistics. This method can guarantee that
the logical condition probability Q(jll) is equal to 1 when y; 1is a true
proposition formed by the disjunction of some propositions, and Q(jll) is



equal to 0 when y; is a false proposition formed by the conjunction of .
some prepositions. However, popular Zadeh algebra does not quarantee(9].

V. APPLICATIONS OF NEW CROSS-ENTROPY EQUATION TO

SmMNORY INFORMATION .

A. New C -entropy Eguation for Sensory Information

Suppose A is a set of disjoint events, such as, a setl of colours,
sounds, gray levels of a pixel of an image, or images; B is a set of
sensations or perceptions; y1 € B is the function of xi e A(1=1,2,...,N).
Hence, P(y1) = P(xi). All x1 that are confused with x; by men's eyes
forms a fuzzy set S(ys;) over A. The logical condition probability or the
confusion probability of ys3 with y(x1) is QQ|i) = Q(ys|x1). The QUi
can also be called the membership function of S(ys) or the membership
grade of xi in S(yy). Imitating (3.1) and (3.14), we can calculate out
Q) and I(X;Y). Different here from (3.14) is

P() = P(ys) = P(x1), 1§ = 1,2,....N.
B. Calculation of Visual Information from a Pixel

Now we regard the visual information from a pixel of a white~black
image in digits. The pixel has a series of gray levels x1 ¢ A(i=1,2,...,N
= 2k). The B is a set of brightness sensations and can be described by one
dimensional space [0,1].

Fig. 1 shows a possible confusion function Q(J|1) of ys . In facts,
brightness discrimination varies with viewing conditions, such as, viewing
distance and lasting time, area of a pixel, and which viewer; so, we use
d as the parameter of discrimination. The less the d, the higher the

discrimination. L B
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Fig.1 Confusion probability function of ys; with y1 = y(xi1).

The relation between y; and x3 we use is
y(x1) = g(Li) = g(h(x1)), _ (6.1)

where Lt denotes the luminance of xi . Function g(Li) and h(xi) are cited
from CIE 1964({12] and [11]. We assume the brightness of original image has
equal probability density distribution, and then calculate out all P(x1).

In this way, I(X;Y) can reach its maximum as d and k are given.
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Fig.2. Cross—information I(X;Y)(bits) varies with number, k,
of bits and discriminate parameter d.

Fig.2 shows that I(X;Y) varies with k and d. The result indicates
that if the brightness discrimination is high enough, the amount of visual
information is equal to that of physical information measured by the
Shannon entropy; if the discrimination is limited, there exists the
optimal number, k = ks, of Dbits so that I(X;Y) reaches its maximum when
{P(1)} and d are given. With k increasing from ks, I(X;Y) will decrease
down a little bit and then stop on a certain level. This result is
somewhat beyond expectation. When k = Kka, some discerning work is done by
the gquantization of a machine; when k > Kka, this work need to be done by
men's eyes, discrimination of which is fuzzy. So it is worse then before.

D. Discussion sbout Visual Information from Images

For an entire colour image in digits, although it is difficult to
measure the visual information in practice as well as to measure the
physical information, it is possible in theory.

Suppese an image has m rows and n columns of pixels; each pixel has
an colour denoted by a vector (b,gr) and b,gr = 1,2,...,.W = 2k, Then
there are N = w™ different images. we assume that A is a set of N
possible images; B is a set of corresponding perceptions; ys in B is the
function of X1 in A. 'If we can obtain P({) and QUji) for each
1.j(iJ=1,2,..N) by experiments, then we can use (6.1) to calculate out
the average amount of visual information.

E. Generalized Cross—entropy Equation for Continuous Signals

We can extend the new cross—information equation to cases of
continuous information sources and destinations.

Let A and B be sets of continuous signal, all x in A be disjoint and
some y = y(x) in B be joint. Then the normal probability density of y is

p(y) = p(x)/y'(x), (6.2)
The logical probability in stead of logical probability density of y is
Q(y). The confusion probability of y with y(Xo)(Xo € A) is Q(y|xo). Hence

QYY) = Ja Q(y|Xe)P(xo)dXo (5.3)
Similarly, we have



1Y) = fo fa [D)/QY)ID(X)IQY | Xe)10gIQUY | X0)/Q(Y)] dxedy. (5.4)

It is easy to prove that I(X;Y) must be finite as seen in Fig. 2 when
k approaches infinity.

VI. CONCLUSION

In this paper, the logical probability is reduced into the normal
probability based on set theory and fuzzy set theory; generalized entropy
equation and generalized cross—entropy equation are deduced by the
classical definition of amount of information instead of defined by one's
willing. They surpass the Shannon theory, yet, can be understood on the
base of the Shannon theory. Their applicability to semantic and sensory
information has been shown by some examples. We can expect that the new
theory is meaningful to the optimization of linguistic and sensory
communications and to the research on some fields like philosophy and
psychology.
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