ON THE SUM OF OBSERVABLES IN QUANTUM SPACES
Beloslav RIEČAN. Liptovský Mikuláš

In [4] a new model for quantum mechanics was suggested (so-called F-quantum space) based on the fuzzy sets theory and analogous to the theory of quantum logics ([6]). While in the theory of quantum logics the sum of observables need not exists ([1]), in the F-quantum space theory the sum exists always ([3, 5]). In this note we consider a more general structure ([2]) including F-quantum spaces as well as quantum logics. In the framework we study the problem of the existence of the sum of observables.

Definitions

By a QF-lattice (= quasiorthocomplemented lattice [2]) we understand a \mathcal{E} -complete lattice M with the greatest element 1 and the least element 0 with a mapping $a \mapsto a^{\flat}$ satisfying the following conditions: (i) $(a^{\flat})^{\flat} = a$ for every $a \in M$; (ii) $a \leq b \implies b^{\flat} = a^{\flat}$.

An observable is a 6-homomorphism $x:B(R) \longrightarrow M$ defined on the 6-algebra of all Borel subsets of the real line, i.e. a mapping satisfying the conditions: (i) $x(E^{\bullet}) = (x(E))^{\bullet}$ for every Borel set E; (ii) $x(\bigcup_{n} B_{n}) = \bigvee_{n} x(E_{n})$ for every sequence of Borel sets.

As a classical example a probability space (X,S,P) can be considered with M = S. To every random variable $f:X \longrightarrow R$ an observable $x:B(R) \longrightarrow M$ can be assigned by the formula $x(E) = f^{-1}(E)$. A more general case is an F-quantum space, i.e. a

family M of fuzzy subsets g of a set X (g:X \rightarrow <0, 1>) such that (i) $1_X \in M$; (ii) $f \in M$ \rightarrow 1 - $f \in M$; (iii) $f_n \in M$ (n=1,2,...) \rightarrow sup $f_n \in M$. On the other hand every quantum logic is a QF-lattice. E.g. if M is the family of all subspaces of a given Hilbert space, then as a \land b one can consider the intersection of the subspaces a and b, a \lor b the subspace generated by a and b and a $^{\circ}$ the orthogonal complement of the space a.

Now we shall define the sum of two observables $x,y:B(R) \longrightarrow M$. We say that the sum exists, if there is and observable $z:B(R) \longrightarrow M$ such that

$$z((-\infty,t)) = \bigvee_{r \in Q} (x(-\infty,r) \wedge y(-\infty,t-r))$$

for every $t \in \mathbb{R}$. The observable z is then called the sum of x and y and it is denoted by z = x + y.

As a motivation two random variables $f_*^*g_*X \longrightarrow \mathbb{R}$ can be considered. Then f + g < t iff $f < t - g_*$. In this case one can choose $r \in \mathbb{Q}$ such that $f < r < t - g_*$ i.e. f < r and g < t - r. Therefore $\{u : f+g(u) < t\} = \bigcup_{r \in \mathbb{Q}} \{u : f(u) < r, g(u) < t-r\} = \bigcup_{r \in \mathbb{Q}} (f^{-1}(-\infty,r) \cap g^{-1}(-\infty,t-r)).$

Results

Theorem 1. Let M be a 6-distributive QF-lattice (i.e. $a \wedge \bigvee_{n} = \bigvee_{n} (a \wedge a_{n})$ for every $a, a_{n} \in M$). Then there is the sum of every observables $x, y:B(R) \longrightarrow M$.

The condition that M is 6-distributive can be substitute by a weaker one. Two elements a, b \in M are called to be compatible $(a \leftrightarrow b)$, if $a = (a \land b) \lor (a \land b^{\circ})$ and $b = (a \land b) \lor (b \land a^{\circ})$.

A 6-complete lattice M is called C-6-distributive, if

 $a \wedge (\bigvee_{n} a_{n}) = \bigvee_{n} (a \wedge a_{n})$ whenever $a \leftrightarrow a_{n}$ for every n. Recall that every quantum logic is C-6-distributive.

Theorem 2. Let M be a C- δ -distributive QF-lattice. Then for every compatible observables x,y:B(R) \longrightarrow M (i.e. such that $x(E) \longleftrightarrow y(F)$ for every Borel sets E, F) there exists the sum x + y.

References

- [1] Dvurečenskij, A.: On a sum of observables in a logic.

 Math. Slovaca 30, 1980, 187 196.
- [2] Dvurečenskij, A.: Compatibility theorem for quasiorthocomplemented lattices. To appear.
 - [3] Dvurečenskij, A. Tirpáková, A.: A note on a sum of observables in F-quantum spaces and its properties.

 Busefal 35, 1988, 132 137.
 - [4] Riečan, B.: A new approach to some notions of statistical quantum mechanics. Busefal 35, 1988, 4 6.
 - [5] Tirpáková, A.: On a sum of observables in F-quantum spaces and its applications. In: Proc.First Winter school on Measure Theory (L.Ján 1988). 161 166.
 - [6] Varadarajan, V.: Geometry of quantum theory. Princeton,
 D.van Nostrand 1968.