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ABSTRACT

Possibilistic ATMS are Truth Maintenance Systems oriented towards hypothetical reasoning
where both assumptions and justifications can receive an uncertainty weight. Uncertainty is
represented in the framework of possibility theory. In possibilistic logic uncertain clauses are
handled as such and then in possibilistic ATMS the management of uncertainty is not separated
from the other capabilities of the ATMS. The main interest of a possibilistic ATMS is to take
advantage of the uncertainty pervading the available knowledge and rank-order environments in.
which a given statement is true. Possibilistic ATMS offers a solution to the revision of uncertain
knowledge bases by deleting the least certain piece(s) of knowledge causing the inconsistency.

1. INTRODUCTION

ATMS ([3,4] ; see also [15]) are truth maintenance systems oriented towards hypothetical’
reasoning since they are able to determine under which set of assumption(s) a given proposition
is true (this set is called the "label" of the proposition). In this paper we introduce an extension.
of the ATMS, called "possibilistic ATMS" (or [T-ATMS for short), where the management of’
uncertainty is integrated inside the basic capabilities of the ATMS. Uncertainty pervadmg
justifications or grading assumptions is represented in the framework of possibility and necessity
measures [16], [7]. These measures agree with the ordinal nature of what we wish to represent.
(it enables us to distinguish between what is plausible and what is less plausible). The certainty
of each granule in the knowledge base (represented by a clause in possibilistic logic [5], [6]) is
estimated under the form of a lower bound of a necessity measure. This uncertainty in the
deduction process is propagated by means of an extended resolution principle. Uncertainty
degrees are then naturally attached to the configurations of assumptions in which a given
proposition is true ; one can also evaluate to what degree a given configuration of assumptions is
inconsistent or compute the more or less certain consequences of a configuration of
assumptions. The approach enables us to handle disjunctions and negations of assumptions
without particular problem. Moreover, by rank-ordering configurations according to the degrees
attached to them, [I-ATMS provides a way of limiting combinatorial explosion when using
ATMS in practice.

We present the basic definitions and results of possibilistic logic first. In Section 3 we give
the basic definitions and functionalities of the [J-ATMS and illustrate them on an elementary
example. Then Section 4 extends the notions of interpretation and extension to the possibilistic
case, and show their possible use for the revision of uncertain knowledge bases. Lastly in
Section 5 the proposed approach is compared with existing uncertainty-handling ATMS's.
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CINTRA is also gratefully acknowledged.
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2. POSSIBILISTIC LOGIC

Possibilistic logic [5,6,8] is an extension of classical logic where one manipulates propositional
or first-order closed formulas weighted by lower bounds of possibility or necessity degrees
which belong to [0,1]. A necessity measure N is the dual of a possibility measure [], i.e. N(g) =
1 - [T (—¢). Here only a fragment of possibilistic logic is considered, namely formulas weighted
by lower bounds of necessity degrees. A necessity measure N satisfies the following axioms :

(1) N(L) =0; (i) N(T) = 1; (iii) V¢, y propositional formulas, N(¢ A ) =min(N(@p), Nw))
where L and T denote respectively contradiction and tautology. We emphasize that we only have
N(¢ v y) 2 max(N(¢),N(y)) in the general case. The dual [] is a possibility measure in the
sense of Zadeh ([16], [7]). We adopt the following conventions :

* N(9p) = | means that, given the available knowledge, ¢ is certainly true ; conversely, if ¢ is said
to be true we can consider ¢ as certain.

*1 > N(¢@) > 0 that ¢ is somewhat certain and —@ not certain at all (since the axioms imply that
V¢, min(N(¢),N(—¢)) =0.

*N(¢) = N(—¢) = 0 models total ignorance ; it expresses that, from the available knowledge,
nothing enables us to say if p is more certainly true than false (or the converse).

Possibilistic logic is well-adapted to the representation of states of incomplete knowledge,.
since we can distinguish between the complete lack of certainty in the falsity of a proposition ¢
(N(—=@) = 0) and the total certainty that p is true (N(¢) = 1). N(¢) = 1 entails N(—~¢) = 0 but the
converse is false. It contrasts with probability measures which are such that Prob(¢) = 1
Prob(—¢) = 0. Possibilistic logic also contrasts with usual multiple-valued logics which are fully:
truth-functional and deal with fuzzy propositions (i.e. with vague predicates), while necessity
degrees apply to standard propositions and are compositional only with respect to conjunction.

A possibilistic formula is a couple (¢ o) where ¢ is a propositional formula and o a
valuation, taken as a lower bound of its necessity measure. Thus, in the following we
write (¢ o) as soon as the inequality N(¢) 2 o is known. If ¢ = Aet (€ then (¢ ) is:
equivalent to {(c; o), i €I}, thus it is sufficient to work with possibilistic clauses (¢ o).

Resolution has been extended to possibilistic logic [5,6]. The classical rule for propositional
clauses is generalized by

(c @), (¢' PB) — (Res(c,c) min(a,B))
where Res(c,c') is a classical resolvent of the classical clauses ¢ and ¢'. See [5,6] for theorem
proving issues with resolution (using extended refutation).

Semantics has been defined for necessity-valued formulas [8], by grading the compatibility
between (classical) interpretations and the uncertain knowledge base. This leads to define the:
inconsistency degree Inc (¥) of an uncertain knowledge base, being the complement to 1 of the
maximal compatibility degree of an interpretation with F£ ; it is shown [8] that Inc(F) is equal
to the weight of the maximal empty clause deducible from £ by resolution. Finally we say that
2 = & if and only if any interpretation is at least as compatible with F as with .

As it was pointed out in [8], the weighted clause (—pvq a) is semantically equivalent to the
weighted clause (q min(o,v(p))) where v(p) is the truth value of p, i.e. v(p) = 1 if p is true and
v(p) = 0 if p is false. The equivalence between (—pv—svq o) and (—pvq min(c,v(s)))
expresses that the rule "if p and s are true then q is certain (at least) to the degree o means that
"in an environment where s is true, if p is true then q is certain (at least) to the degree o" if we
decide to consider s as an assumption. This equivalence leads to the following modified
presentation of the resolution rule :

(—pvq min(a,v(s))), (pvr min(B,v(1))) — (Qvr min(x,v(s),B,v(1))).
This enables us to express that if the clause —pvq is certain to the degree o in an environment
where s is true and if the clause pvr is certain to the degree B in an environment where t is true,
then the resolvent clause qvr is certain to the degree min(c,B) in an environment where s and t
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are true (since v(s A t) = min(v(s),v(t))). This way of giving to some literals the assumption
status by transferring them into the weight part of the clause leads us to define in Sections 3 and
4 a possibilistic ATMS and to develop the associated basic procedures.

Let us give now an example : let X be the following set of possibilistic clauses, concerning a
given meeting about which we would like to make some predictions. The proposition Albert
means that Albert will come to a given meeting (and so on for Betty, etc.).

Cl (—Albert v —Betty v =Chris 0.7)
“it is rather certain that Albert, Betty and Chris will not come together "

C2 (—David v Chris 0.4) C3 (—Betty v begins-late 0.3)

C4 (—begins-latev —Chris 0.3) CS5 (—begins-latev —quiet 0.5)

C6 (—Albertv —David v —~quiet 0.6) C7 (—Albertv —Betty v —David v —~quiet 0.9)
C8 (Betty 0.2) C9 ' (—Albert v —Eva v productive 0.5)

C10 (—Albert v —Betty v Chris v —Eva v productive (.8)

By resolution we can for example infer (—Albert v —Betty v —David 0.4) from C1 and C2. It
can be checked that ¥ is consistent ; from Y, we can infer that N(—David) > 0.2, i.e. it is weakly
certain that David will not come to the meeting. Clearly, the weights in the above example reflect
an ordering of the propositions, in terms of certainty, and are used only as landmarks.

3. BASIC PRINCIPLES AND DEFINITIONS OF A POSSIBILISTIC A.T.M.S.

Classical ATMS require that the clauses contained inside the knowledge base are certain. We:
may wish to handle more or less uncertain information without losing the capacities of the:
ATMS. The basic principle of the [[-ATMS is to associate to each clause a weight o which is a:
lower bound of its necessity degree. Assumptions may also be valued, i.e. the user or the
inference engine may decide at any time to believe an assumption with a certainty degree that
he/she will give. A [I-ATMS is able to answer the following questions :

(1) Under what configuration of the assumptions (i.e., what assumptions shall we consider as

true, and with what certainty degrees) is the datum d certain to the degree o ?

(il) What is the inconsistency degree of a given configuration of assumptions ?

(iii) In a given configuration of assumptions, to what degree is each datum certain ?

The kind of classical ATMS we extend here is Cayrol and Tayrac's [1] generalized ATMS, where

each piece of information is represented by a general propositional clause, which enables :

- a uniform representation for all pieces of knowledge (no differenciated storage and treatment
between justifications and disjunctions of assumptions).

- the capability of handling negated assumptions as assumptions, i.e. environments and
nogoods may contain negations of assumptions.

- a simple and uniform algorithm for the computation of labels, based on a restricted resolution .

The classical notions of environments, labels, nogoods, contexts for ATMS are now extended to
[T-ATMS.

Environments
Let X be a set of uncertain clauses. Let E be a set of assumptions. Then :

-) [E o is an environment of the datum d if and only if N(d) = « is a logical consequence of
E U %, where the assumptions of E are considered as certainly true (the certainty degree of
the associated clausesis 1) ;

-) [E o] is an «-environment of d if and only if [E ] is an environment of d and if Vo' > «,
[E a'] is not an environment of d (o is maximal) ;

-) [E a] is an o-contradictory environment, or an &-nogood if and only if E U X is a-
inconsistent (i.e. EU Z = (L o)), with o maximal. We shall use the notation
nogood aE The a-nogood [E o] is said to be minimal if there is no [B-nogood [E' B]
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such that E' > Eand o < 3.

Labels
In order to define the label of a datum d, we consider only non-weighted assumptions (i.e.
they will have the implicit weight 1). It can be shown that it is useless to weight the assumptions

inside the labels (which also holds for the nogood base). The label of d, L(d) = {[E; o],i € I}

is the only fuzzy subset of the set of the environments for which the following properties hold :

- (weak) consistency : V[E; o] € L(d), E; U X is B-inconsistent, with B < o; (i.e.
Inc(E; U %) < o in the sense of Section 2, the certainty degree associated to the E;'s being 1) ;
it guarantees that either E; is consistent (i.e. B = 0), or its inconsistency degree is anyway
strictly less than the certainty with which d can be deduced from E; U X (i.e. we are sure to
use a consistent sub-base of E; U X to deduce d, see [8]).

- soundness : L(d) is sound if and only if ¥ [E; o;] € L we have E4 Ux =@ a;) where =
has been defined in Section 2 ; i.e., L(d) contains only environments of d.

- completeness : L(d) is complete if and only if for every E'such that E'U Y = (d ') then 3i
€ IsuchthatE; C E'and o 2 o'. Le., all minimal a-environments of d are present in L(d).

- minimality : L(d) is minimal if and only if it does not contain two environments (E1 @) and
(Ey o) suchthat E1 C E5 and oy 2 aty. It means that L(d) only contains the most specific
a-environments of d (i.e. all their assumptions are useful).

We emphasize that ranking environments according to their weight in the label of each datum

provides a way for limiting the consequences of combinatorial explosion (problem already

pointed out by Provan [13] and Raiman [14]) : indeed when a label contains too many

environments, the [I-ATMS can help the user by giving the environments with the greatest
weight(s) only.

Example (continued) : we may consider the literals Albert, Betty, Chris, David and Eva as

assumptions (abbreviated respectively by A, B, C, D, E), i.e. we wish to be able to fix the set of

persons attending the meeting, in order to get it quiet, or productive, etc. In this case, the
minimal nogoods are : nogood0.7{A,B,C}; nogood0.4{A,B,D}; nogood0.4{D,-1C};‘

nogoody 3{B,C}; nogoodq 3{B.D}; nogoodq 5{—B}; nogoodq 7{C}; nogoodg 2{D}.

We now give examples of labels.

The label of productive is {{A, E}q 5, {A, B,~C,E}( g }. The notation means that {A,E} isa

0.5-environment, etc. The label of quiet is { }, i.e. no configuration of assumptions enables to

deduce that the meeting will be quiet with a strictly positive certainty degree.

The label of —quiet is { { }0.2- {Blg.3, {A.D}g.6» {A,B,D}Ogg} ; let us make a few remarks :

- the presence of the empty 0.2 environment { }() 5 in the label expresses that if no assumption is
made, then we can already deduce (—quiet 0.2).

- the 0.9-environment {A,B,D}O.g contains the 0.3-nogood nogood0.3{B,D}; in a classical
ATMS, such an environment would have been inhibited, since it would have been inconsistent;
however the label is weakly consistent. This example show us that there is no equivalence
between consistency and weak consistency (we have only consistency = weak consistency).

- the environment {A,B,D} contains the environment {A,D} and nevertheless {A,D} ¢ and
{A,B,D}g g are both in the label of —quier without violating the minimality of the label,
because {A,D}( ¢ does not subsume {A,B,D}j g whereas {A,D} subsumes {A,B,D} in
classical logic and thus only {A,D} would be kept in the label of —quier in a classical ATMS.
Besides, the empty environment {} subsuming any other one, it would remain alone in the
label of —quiet in a classical ATMS.

Consequently, due to the presence of uncertainty weights, the ATMS becomes more selective,

and at the same time supplies richer symbolic information.

We may wish to add the clause C11 : (Chris v David 1), i.e. we are absolutely certain that
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either Betty or David will come ; then the system ¥ becomes 0.2-inconsistent, since (L 0.2) is
derived by resolution from {C2, C3, C4, C8, C11}. In consequence the new nogood base is :
nogood; {—~C,—D}; nogoodg 7{A,B,C}; nogoodgp 7{A,B,-D}; nogoodg 4{A,B};
nogood( 4{—C}; nogoody 3{B}; nogoodg 7{}.

The fact that the empty environment is a 0.2-nogood expresses that 3, is 0.2-inconsistent.
Consequently, all environments of a label having a membership degree less or equal to 0.2 are
inhibited. In fact, the labels do not take into account the clause (Betty 0.2) which is
“responsible” of the 0.2-inconsistency, since it is the least reliable clause involved in it. The label
of —quiet is now { {A’D}O.G’ {A,ﬁC}O.6, {A,B,.D }0.9, {A,B,—C }0.9 } .

Contexts

To extend the notion of context, we now consider weighted assumptions, which are pairs (H o)
where H is an assumption and o € [0,1] is the certainty degree assigned to H.

The context associated with the set of weighted assumptions & is the set of all pairs
(, valéa(d)), where d is a datum or an assumption, and valéa(d) =sup {a, & UZ= (d a)}. Let
us now give the following theorem :

Let € be a set of valued assumptions. Let d be a datum ; it can be shown that & U 3 = (d o) in
possibilistic logic if and only if J[E; o] € Label (d), E;= {Hi,l’ Hi,2’ -« » Hj p} such that

@) &* > E; where &* is the classical set of assumptions obtained from & by ignoring the

weights.

() o < min (o4,B1.89,....,8,) where B1,B5,....,B, are the weights attached to Hj ..

H; 5...., Hi,n in&.
(iii) a>Inc (8§ U ).
The proof of the theorem is obvious if using the results of classical ATMS. This theorem gives
an immediate algorithm to compute contexts, given the label of every datum :
o_max « 0;
For every [E; a;] € Label (d) do
if §* > E;
then 0_max ¢ max(o._max,min(c ;B 1,8 95-+++»Bp) Where
Bis--..,By are the weights attached to H; 1, ... ,H; pin §.
end
Intuitively, for each environment of the label of d included in &*, the algorithm computes the
degree of certainty with which this environment entails d. This degree depends upon the
justifications used in deriving d (via ;) and the weights of the assumptions in this environment.

Example (continued) : let us consider the initial system ¥, = {C1, ..., C10) and let & be the set
of weighted assumptions & = {(A 0.8), (=C 0.9), (D 0.5), (E 0.7)} ; then the inconsistency
degree of & U X is 0.4 and the context of & is {(A 0.8), (=C 0.9), (D 0.5), (E 0.7),
(—quiet 0.5), (profitable 0.5)}.

4. INTERPRETATIONS AND EXTENSIONS IN A POSSIBILISTIC ATMS

In a [I-ATMS, like in a classical ATMS, an interpretation is a maximal consistent set of
assumptions. The complementary (in the whole set of assumptions) of an interpretation is called
a candidate. A candidate is a (minimal) set of assumptions whose deletion makes the knowledge
base consistent. An extension is the context associated with an interpretation.

The presence of certainty weights inside the possibilistic ATMS will enable us to rank
interpretations, which is useful in the case we get a lot of interpretations and extensions. When
the user asks the ATMS for a datum d, the ATMS will search for the truth or the falsity of d in
the best extension(s), i.e. the least inconsistent one(s). We now show how we can use
possibilistic interpretations for the revision of uncertain knowledge bases.
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The problem of the revision of uncertain knowledge bases consists in finding, from a
partially inconsistent knowledge base, the "closest” consistent sub-base by taking out some
formulae. Since less certain formulae are less "entrenched" in the knowledge base than more
certain ones, a formula must never be taken out if a less certain one may be taken out instead.
This work can be done with a possibilistic ATMS, by controlling each formula by means of a
specific assumption. We say that a justification is controlled by an assumption if the justification
contains the assumption in its antecedent part. Let us take an example : let F be the set of
uncertain formulae {(p 0.6), (—pvq 0.9), (-=pv—q 0.4), (—~qv—r 0.3), (=pv—r 0.2),
(rv(=pas) 0.1)}. Let Hy, Hj,..., Hg be the assumptions controlling each formula. Note that
Hg controls two clauses. The obtained set of justifications 3, is :

Hi—-p (0.6) Hy - -pvgq (0.9) H3 - —pv—q 0.4)
H4 — —qQ Vv -r (03) H5 -=> —pVv-r (02)
Hg— rvs (0.1) Hg— rv-p (0.1

When H; is true (resp. false), the formula (i.e. one or more clauses) controlled by H; is taken as
valid (resp. inhibited). The formulae taken out of the base will be those controlled by the:
assumptions of the "best" candidate, and the remaining formulae will be those controlled by the
assumptions of the "best” interpretation. To compute the interpretations, we compute their
complements, the candidates, by selecting one assumption out of each minimal nogood [4].
Since the minimal nogoods are {HI’HZ’H3}O.4’ {HI’HZ’H4’H6}O.1 and {HI’HS’HG}O.I’
we have five candidates in our example, i.e. we have 5 solutions for taking out formulae from
the knowledge base to make it consistent. These candidates are {Hy}, {H3,Hy,Hs}, {Hyp,Hs},
{Hy,Hg} and {H3,Hg}. To make a choice among these candidates we must introduce a total
ordering among them. Namely we associate to a candidate C the multiset, denoted by list (C), of
the weights of the justifications controlled by the elements of C. In our example, to {H{} we'
associate {0.6}, to {H3,Hy, Hg} we associate {0.4,0.3,0.2}, etc. Then, if C1 and C; are two
candidates, we say that C; < C, if and only if
(i) C;=Cy=0 or (ii) sup (list (C1)) < sup (list (Cy))
or (iii) sup(list(Cy)) = sup(list(C,)) and C; - {sup(list(C¢))} < C, - {sup(list(Cy))} ;

< isa total ordering among the candidates ; the minimal elements relatively to <are called
lexicographically optimal candidates, and their complement in the whole set of assumptions
lexicographically optimal interpretations. If C jand C, are two candidates such that C; < C, then
C, is a better candidate to deletion than Cj., since either the most reliable justification controlled
by C, is strictly more reliable than the most reliable justification controlled by C, or these two
most reliable justifications controlled by C and C, have the same weight, but the second most
reliable justification controlled by C is strictly more reliable than Cy's, etc. In our example,
there is only one lexicographically optimal candidate, which is {H3,Hg}. The lexicographically
optimal candidates can easily be computed from the nogoods. Thus the optimal revision of the
knowledge base comes down to deleting the justifications controlled by H3 and Hg.

5. POSSIBILISTIC A.T.M.S. VS. OTHER EXISTING "UNCERTAINTY -
HANDLING" A.T.M.S.

De Kleer and Williams [4], in a multiple faults diagnosis problem, compute the probability of
a candidate (i.e. a configuration of faults) given the outcomes of the system and assuming that
faults are mutually independent. Falkenheiner [10] has incorporated Dempster-Shafer theory into
Doyle’'s TMS ; Provan [13], D'Ambrosio [2], Laskey and Lehner [11] have independently
incorporated belief functions into the ATMS ; their approaches are somewhat different but share
the same basic features : first, a mass function is associated with each assumption ; then, for
each datum x we compute the belief Bel(x) of x by first computing the label of x symbolically
(which can be done in the classical way), then we compute Bel(x) from Label(x) ; Provan
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computes Bel(x) by expressing logically Label(x) under the form of a formula containing only
independent sub-formulas, assuming mutual independence of assumptions. D'Ambrosio's
approach does not use the full Dempster-Shafer theory ; besides, his way of propagating
uncertainty is closer to a rule-based system than to a pure logical system (as he uses conditional
beliefs and not beliefs of logical implications). Laskey-Lehner's and Provan's approaches both
incorporate the full Dempster-Shafer theory into the ATMS, and differ essentially by their
algorithm for the computation of Bel(x). See also Pearl [12] whose proposal is close to Provan's
(without normalizing Dempster rule).

Our approach differs from the preceding ones on several points :
First, the ATMS with embedded belief functions enable us to rank interpretations, as they intend
to do, but they cannot handle the uncertainty pervading the knowledge base if any, i.e. the
justifications. They hold the justifications as classical knowledge (i.e. certain) and, putting
weights on the assumptions, they deduce the weights attached to the other data. Our approach
does not attach any a priori weight to each datum (assumptions or non-assumptions) but assigns
a certainty degree to all clauses of the knowledge base.
Secondly, in the other approaches, truth maintenance and uncertainty management are completely
separated, i.e. the label of a datum x is first computed, then Bel(x) is computed (of course,
taking into account Label(x)). Our approach completely integrates the uncertainty management
into the truth maintenance system, by assigning a weight to each environment of a datum.
Besides, the handling of weights will be done during the computation of labels, since certainty
weights are present inside the label.
Thirdly, the main purpose of introducing uncertainty into ATMS is the ability of ranking
solutions (i.e. interpretations) and eliminating solutions which are too uncertain. Hence the
precise values of certainty degrees are not as important as their ordering. Possibility theory’
offers a framework where the ordering of the uncertainty degrees is more important than their
precise values, and which requires easier computations (only min and max operations are used).
than the general Dempster-Shafer approach. Furthermore, the weights assigned to nogoods are:
always available and no extra computations are required in order to renormalize results.
Fourthly, in Provan's model, the belief of the datum x is first computed formally by rewriting
the label of x into an "independent form" and then computed numerically ; if we decide to change:
the weight of an assumption, the formal expression of the label of x remains unchanged and the:
re-computation of Bel(x) is immediate ; however this is not the case if the label of x changes:
(which may happen each time we add a new justification) : then we have to transform again the:
expression of the label of x ; in the possibilistic model, both changes of weights or labels lead to
almost no more computations than in De Kleer's original model.
Lastly, the other models cannot handle disjunctions of assumptions ; besides, Provan's model
needs to consider the assumptions as independent as long as they are not mutually exclusive (i.e.
not containing any nogood). Possibilistic A.T.M.S. does not require this assumption, and can
handle disjunctions of assumptions, as well as negated assumptions.

6. CONCLUSION

A possibilistic ATMS, based on a straightforward generalization to possibilistic logic of the
works of Cayrol and Tayrac on CAT-correct resolution {1], is currently being implemented.

Possibilistic ATMSs enable a joint handling of assumptions and uncertainty relative to a
knowledge base, in the framework of possibilistic logic. The fact that the fragment of
possibilistic logic, which is used here remains on many points close to classical logic, facilitates
the extension of efficient procedures, such as those based on CAT-correct resolution for the
computation of labels, nogoods and contexts, by ordering the environments of a datum
according to the certainty with which it can be deduced from each of them.
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Possibilistic ATMS can be applied to truth maintenance problems in presence of uncertainty,
to default reasoning, to fault diagnosis [9], or to generation of (the most plausible) explanations.
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