CONVERGENCE IN L-FUZZY PROXIMITY SPACES

Xie Xian-zhong and Liu Wang-jin Department of Mathematics, Sichuan Normal University, Chengdu, 610066, P.R.China.

ABSTRACT

In this paper, we give the concept of L-fuzzy proximal convergence in L-fuzzy proximity spaces, and get its an alternate description. We establish the relations between L-fuzzy proximal convergence and ordinary proximal convergence, therefore, it is "good extension". Also, we disscus the basic properties of L-fuzzy proximal convergence, and obtain some results analogous to those that hold for ordinary proximity spaces.

KEY WORDS

L-fuzzy proximity spaces, L-fuzzy proximity neighborhood, L-fuzzy proximity continuous, L-fuzzy proximity product operator, L-fuzzy proximal convergence.

1980 AMS Subject Classification 54A40

1 Introduction

In /1/, Katsaras introduced and studied fuzzy proximity spaces. Later, other authors pay attention to this theory, e.g. /2/--/8/ ect. get a set of results.

In the present paper, we shall introduce and disscus the convergence in L-fuzzy proximity spaces, and show that there exists closed relations between L-fuzzy proximal convergence and ordinary proximal convergence, which is said to be "good extension" similar Lowen's, c.f. /9/. Also, we

prove that L-fuzzy proximal convergence keep many basic properties.

2 Preliminaries

In this paper $L = (L, V, \Lambda, \prime)$ always denotes a completely distributive lattice with order-reversing involution. Let 0 be the least element and 1 be the greatest element in L. Suppose X is a nonempty (usual) set. L^X will denote the family of all L-fuzzy set on X. It is clear that $L^X = (L^X, V, \Lambda, \prime)$ is a completely distributive lattice with order-reversing involution, which has the least element $\underline{0}$ and the greatest element $\underline{1}$. At L^X , SuppA = $\{x \in X: A(x) > 0\}$ is called the support of A.

Definition 2.1 (/10/) F: $L_1^{X_1} \rightarrow L_2^{X_2}$ is called an order homomorphism iff (1) F is union-preserving; (2) F^{-1} is order-reversing involution preserving, there $F^{-1}(B) = \bigvee \{A \in L_1^{X_1} : F(A) \leq B\}$ for each $B \in L_2^{X_2}$.

Suppose f: $X_1 \rightarrow X_2$ is an ordinary mapping, it induces an order homomorphism F: $L_1^{X_1} \rightarrow L_2^{X_2}$ as follow:

$$F(A)(y) = \begin{cases} \bigvee \{A(x) : x \in f^{-1}(y)\}, \text{ for } f^{-1}(y) \neq \phi \\ 0, \text{ otherwise} \end{cases}$$
 for $A \in L_1^{X_1}, y \in X_2$

$$F^{-1}(B) = B \circ f$$
, for $B \in L_{2}^{X_{2}}$.

We say that F is Zadeh's order homomorphism induced by f. There exists a 1--1 correspondence between Zadeh's order homomorphism F and its ordinary induced mapping f.

Lemma 2.2 (/10/,/11/) Let $F: L_1^{X_1} \to L_2^{X_2}$ be an order homomorphism, then: (1) $A \le F^{-1}(F(A))$ for any $A \in L_1^{X_1}$; $B \ge F$ ($F^{-1}(B)$) for any $B \in L_2^{X_2}$; (2) $A \le F^{-1}(B)$ iff $F(A) \le B$ for any $A \in L_1^{X_1}$, $B \in L_2^{X_2}$; (3) F^{-1} is union-preserving and intersection-preserving.

Lemma 2.3 Let $F: L_1^{x_1} \to L_2^{x_2}$ be Zadeh's order homomorphism induced by f. Then SuppF (A) = f (SuppA), for any $A \in L_1^{x_1}$.

Proof f (SuppA) = { f (x): A (x) > 0, x \in X }
SuppF (A) = { y:
$$V$$
 { A (x): x \in f^-I(y)} > 0 }

Firstly, $f(x) \in f(SuppA)$, then A(x) > 0. Let y = f(x), we have $\bigvee \{A(x): x \in f^{-1}(y)\} > 0$, therefore, $f(x) = y \in SuppF(A)$.

Secondly, $y \in \text{Supp} F(A) \Longrightarrow \bigvee \{ A(x) : x \in f^{-1}(y) \} > 0$, hence, there exists $x_0 \in f^{-1}(y)$, $A(x_0) > 0$, thus $y = f(x_0) \in f(\text{Supp} A)$.

Definition 2.4 (/4/) A binary relation G on L^X is called an L-fuzzy proximity iff

- (P1) $A \delta B \Rightarrow B \delta A;$
- (P2) $A \not\leftarrow B' \implies A \not \land B$;
- (P3) $A \delta B$, $A \leq C$, $B \leq D \Rightarrow C \delta D$;
- (P4) $A \delta (BVC) \Rightarrow A \delta B \text{ or } A \delta C$:
- (P5) $0\bar{8}1;$
- (P6) $A \overline{\delta} B \Longrightarrow$ there exists a $C \in L^X$ such that $A \overline{\delta} C$ and $C' \overline{\delta} B$. The pair (L^X , δ) is called an L-fuzzy proximity space.

<u>Lemma</u> 2.5 Let (L^{X} , §) be an L-fuzzy proximity space, then

- (1) $A\delta(BVC) \iff A\delta B \text{ or } A\delta C$;
- (2) $A\overline{\delta}B \iff$ there exists a $C \in L^X$ such that $A\overline{\delta}C$ and $C'\overline{\delta}B$.
- $(3) A_{\underline{i}} \overline{\delta} B_{\underline{i}}, i = 1, 2, ..., n, \Rightarrow (\bigwedge_{i=1}^{n} A_{\underline{i}}) \overline{\delta} (\bigvee_{i=1}^{n} B_{\underline{i}}).$

Proof There we shall prove (2), others are similar.

- (⇒) It is clear from (P6).

Definition 2.6 (/4/) Let (L^X , G) be an L-fuzzy proximity space. We define $c_G: L^X \to L^X$ by $c_G(A) = \bigwedge \left\{ B \in L^X: A \ \overline{G} \ B' \right\}$ for any $A \in L^X$. Then c_G is an L-fuzzy K closure operator on L^X . We Call that c_G is the L-fuzzy K closure operator induced by G, and G, which is defined by $G = \{A \in L^X: c_G(A') = A'\}$, is the L-fuzzy topology induced by G.

Definition 2.7 Let $(L_i^{X_i}, \delta_i)$, i = 1, 2, be L-fuzzy proximity spaces. An order homomorphism $F: (L_i^{X_i}, \delta_i) \rightarrow (L_2^{X_2}, \delta_2)$ is called L-fuzzy proximity continuous iff $A \delta_i B$ implies $F(A) \delta_2 F(B)$ for any $A, B \in L_i^{X_i}$.

Definition 2.8 Let $\left\{ \left(L^{X_t}, \xi_t \right) \right\}_{t \in T}$ be a family of L-fuzzy proximity

spaces and $X = \prod_{t \in T} X_t$. P_t : $L^X \to L^X$ is Zadeh's projection. For $A, B \in L^X$, we define $A \notin B$ as follow: $A \notin B \iff$ if $A = \bigvee_{i=1}^n A_i (A_i \in L^X)$, $B = \bigvee_{j=1}^m B_j (B_j \in L^X)$, then there exist i_0 and j_0 such that $P_t(A_{i_0}) \notin P_t(B_{j_0})$ for each $t \in T$. Then G is an L-fuzzy proximity on L^X . It is called the L-fuzzy proximity product operator. The pair (L^X, G) is said to be the product of (L^X, G)

Remark Definition 2.7 and 2.8 is generalizations of those corresponding definitions in /1/.

3 Definition of L-fuzzy proximal convergence

Suppose (D, \leq) is a directed set. OHOM($L_1^{X_1}$, $L_2^{X_2}$) denotes the family of all order homomorphism from $L_1^{X_1}$ to $L_2^{X_2}$. The mapping S: D \rightarrow OHOM($L_1^{X_1}$, $L_2^{X_2}$) is called the order homomorphism net, we write S = $\{F_n: n \in D\}$.

<u>Definition 3.1</u> Let $(L_2^{X_2}, \delta_2)$ be an L-fuzzy proximity space and $S = \{F_n: L_1^{X_1} \to L_2^{X_2}: n \in D\}$ be an order homomorphism net. S is said to converge L-fuzzy proximally to the order homomorphism $F: L_1^{X_1} \to L_2^{X_2}$ iff $F(A) \overline{\delta_2} B$ for $A \in L_1^{X_1}$, $B \in L_2^{X_2}$ implies $F_n(A) \overline{\delta_2} B$ eventually, or equivalencly there exists a $N \in D$ such that $F_n(A) \overline{\delta_2} B$ for all $n \geqslant N$.

<u>Propostion</u> 3.2 Let ($L_2^{X_2}$, δ_2) be an L-fuzzy proximity space and the order homomorphism net $S = \{F_n \colon L_1^{X_1} \to L_2^{X_2} \colon n \in D\}$ converge L-fuzzy proximally to F. Then any subnet of S converges also L-fuzzy proximally to F.

Proof It is clear from Definition 3.1.

Definition 3.3 (/4/) Let (L^X , δ) be an L-fuzzy proximity space, A, $B \in L^X$. We called B a L-fuzzy proximity neighborhood of A iff $A \overline{\delta} B'$.

Remark It is clear that $c_6(A)$ is infimum of the set of all L-fuzzy proximity neighborhood of A.

<u>Propostion</u> 3.4 A δ B iff there exist \mathcal{N}_A and \mathcal{N}_B , which are respectively L-fuzzy proximity neighborhoods of A and B, such that $\mathcal{N}_A \leq \mathcal{N}_B'$.

Proof (\Longrightarrow) If $A \ \overline{\delta} B$, by Lemma 2.5, there exists $C \in L^X$ such that $A \ \overline{\delta} C$ and $C' \ \overline{\delta} B$. Let $\mathcal{N}_A = C'$, $\mathcal{N}_B = C$, hence $\mathcal{N}_A \leqslant \mathcal{N}_B'$.

(\Leftarrow) If there exist \mathcal{N}_A and \mathcal{N}_B , $\mathcal{N}_A \leqslant \mathcal{N}_B'$, by Definition 3.3, $A \in \mathcal{N}_A'$, $B \in \mathcal{N}_B'$, hence $A \in \mathcal{N}_A'$, $B \in \mathcal{N}_A'$, by Lemma 2.5, $A \in B$.

<u>Propostion</u> 3.5 Let $(L_2^{X_2}, \int_2)$ be an L-fuzzy proximity space and $S = \{F_n: L_1^{X_1} \rightarrow L_2^{X_2}: n \in D\}$ be an order homomorphism net. Then the net S converges L-fuzzy proximally to order homomorphism $F: L_1^{X_1} \rightarrow L_2^{X_2}$ iff B is an L-fuzzy proximity neighborhood of F (A) for any $A \in L_1^{X_1}$, then B is also an L-fuzzy proximity neighborhood of F_n (A) eventually.

Proof The net S converges L-fuzzy proximally to order homomorphism $F \Leftrightarrow F(A) \ \overline{\delta_2} C$ for any $A \in L_1^{X_1}$, $C \in L_2^{X_2}$ implies $F_n(A) \ \overline{\delta_2} C$ eventually Let B = C', B is an L-fuzzy proximity neighborhood of F(A), then B is also an L-fuzzy proximity neighborhood of $F_n(A)$ eventually.

4 The relations between L-fuzzy proximal convergence and ordinary proximal convergence

Ordinary proximity space and ordinary proximal convergence see /12/.

Lemma 4.1 Let (X, μ) be an ordinary proximity space. Then the binary relation $\delta = i (\mu)$ on L^X defined by: A δ B iff there exist C and D, subset of X, such that $A \leq \chi_C$, $B \leq \chi_D$, and $C \overline{\mu} D$, is an L-fuzzy proximity. It is called the L-fuzzy proximity induced by μ . The pair (L^X , δ) is said to be the L-fuzzy proximity space induced by (X, μ).

Lemma 4.2 Let (L^X , δ) be an L-fuzzy proximity space. We define the binary relation $\mathcal{U} = \mathcal{W}(\delta)$ as follow: \mathcal{CMD} iff $\chi_{\mathcal{C}} \delta \chi_{\mathcal{D}}$ for \mathcal{C} and \mathcal{D} , subset of \mathcal{X} . Then \mathcal{M} is an ordinary proximity on \mathcal{X} , it is called the ordinary proximity induced by δ . The pair (\mathcal{X} , \mathcal{M}) is said to be the ordinary proximity space induced by (L^X , δ).

Lemma 4.3 Let (L^X , 6) be an L-fuzzy proximity space and (X, μ) be an ordinary proximity space, $r = i (\mu)$ which is defined as above. Then:

- (1) ArB \iff SuppA μ SuppB for any A, B \in L X ;
- (2) A δ B \iff χ_{suppA} δ χ_{suppB} for any A, B $\in L^X$.

 $\underline{\text{Remark}}$ (1) Lemma 4.1, 4.2 and 4.3 are generalizations of those

corresponding propostions in /1/ and /8/.

(2) For i defined by Lemma 4.1 and W defined by Lemma 4.2, we have that $i \circ W$ is the identically mapping from LFP to itself, there LFP denotes the collection of all L-fuzzy proximity on L^X .

Propostion 4.4 Let (L^X , δ) be the L-fuzzy proximity space induced by the ordinary proximity space (X, μ). Then Zadeh's order homomorphism net $S = \{F_n \colon L_1^Y \to L^X \colon n \in D\}$ converges L-fuzzy proximally to Zadeh's order homomorphism F in (L^X , δ) iff the net $S^* = \{f_n \colon Y \to X \colon n \in D\}$ converges proximally to f in (X, μ). There f_n and f are respecturely ordinary induced mapping of Zadeh's order homomorphism F_n and F, they are determined uniquely by F_n and F.

Proof (\Longrightarrow) Let f (C) $\bar{\mu}$ D for any CCY, DCX. Since f (C) = $\sup \chi_{f(C)} \bar{\chi}_{f(C)} \bar{\chi}_{D}$, we have $\sup \chi_{f(C)} \bar{\chi}_{D}$, by Lemma 4.3 (1), $\chi_{f(C)} \bar{\chi}_{D}$, by F (χ_{C}) = $\chi_{f(C)}$, F (χ_{C}) $\bar{\chi}_{D}$.

By L-fuzzy proximal convergence of S, F_n (χ_c) $\bar{\delta}$ χ_D eventually, hence, $\chi_{f_n(c)} \bar{\delta} \chi_D$ eventually. By Lemma 4.3 (1), $\sup \chi_{f_n(c)} \bar{\lambda} \sup \chi_D$ eventually, therefore, f_n (C) $\bar{\lambda}$ D eventually.

(\Leftarrow) Let F (A) $\bar{\delta}$ B for any $A \in L_1^{\bar{X}}$, $B \in L^{\bar{X}}$ By Lemma 4.3 (1), SuppF (A) $\bar{\mu}$ SuppB, by Lemma 2.3, f (SuppA) $\bar{\mu}$ SuppB.

Since S* converges proximally to f, we have f_n (SuppA) $\overline{\mu}$ SuppB eventually. Hence, SuppF $_n$ (A) $\overline{\overline{\mu}}$ SuppB eventually, therefore, F_n (A) $\overline{\overline{b}}$ B eventually.

Propostion 4.5 Let (X, μ) be the ordinary proximity space induced by the L-fuzzy proximity space (L^X , δ). Then the mapping net $S^* = \{f_n \colon Y \to X \colon n \in D\}$ converges proximally to the mapping f in (X, μ) iff the Zadeh's order homomorphism net $S = \{F_n \colon L_1^Y \to L^X \colon n \in D\}$ converges L-fuzzy proximally to the Zadeh's order homomorphism F. There F_n and F are respecturely the Zadeh's order homomorphism induced by f_n and f.

Proof (\Longrightarrow) Let F (A) $\bar{\delta}$ B for any A \in L₁ Y, B \in L^X. By Lemma 4.3 (2), χ Supp F(A) $\bar{\delta}$ χ Supp B, by Lemma 2.3, χ f(Supp A) $\bar{\delta}$ χ Supp B, hence,

f (SuppA) I SuppB.

Since S* converges proximally to f, we have f_n (SuppA) $\overline{\mu}$ SuppB eventually. Hence, Supp($F_n(A)$) $\overline{\mu}$ SuppB eventually, by Lemma 4.2, χ Supp $F_n(A)$ $\overline{\delta}$ χ SuppB eventually, therefore, F_n (A) $\overline{\delta}$ B eventually.

(\Leftarrow) Let f (C) \bar{k} D for any CCY, DCX. By Lemma 4.2, $\chi_{f(c)}\bar{k}$ χ_{D} , hence F $(\chi_c)\bar{k}$ χ_{D} .

Since the L-fuzzy proximal convergence of S, F_n (χ_c) $\bar{\delta}$ χ_D eventually, hence $\chi_{f_n(c)}\bar{\delta}$ χ_D eventually, by Lemma 4.2, f_n (C) $\bar{\mu}$ D eventually.

Remark By Propostion 4.4 and 4.5, we may say that the L-fuzzy proximal convergence is "good extension" similar Lowen's, c.f. /9/.

5 The basic properties of L-fuzzy proximal convergence

<u>Propostion</u> 5.1 Let $(L_i^{X_i}, \delta_i)$, i = 1, 2, be L-fuzzy proximity spaces and the continuous order homomorphism net $S = \{F_n : (L_i^{X_i}, \delta_i) \rightarrow (L_i^{X_i}, \delta_i)\}$ F_n is L-fuzzy proximity continuous, $n \in D$ converge L-fuzzy proximally to the order homomorphism $F: (L_i^{X_i}, \delta_i) \rightarrow (L_i^{X_i}, \delta_i)$. Then F is also L-fuzzy proximity continuous.

Proof Let A G_1 B for any A, B \in L₁X₁, we shall prove F (A) G_2 F (B). Otherwisely, suppose F (A) \overline{G}_2 F (B), by Lemma 2.5 (2), there exists $C \in L_2^{X_2}$ such that F (A) \overline{G}_2 C and C' \overline{G}_2 F (B). Since S converges L-fuzzy proximally to F, there exists a common N \in D such that F₁: (A) \overline{G}_2 C and C' \overline{G}_2 F₁ (B) for all $n \ge N$. Hence, F₁ (A) \overline{G}_2 F₁ (B) for all $n \ge N$, contradicting the conditions that each F₁ is L-fuzzy proximity continuous. Therefore, F is L-fuzzy proximity continuous.

<u>Propostion</u> 5.2 Let $(L_1^{X_1}, \mathcal{T})$ be an L-fuzzy topological space and $(L_2^{X_2}, \delta)$ be an L-fuzzy proximity space. If the order homomorphism net $S = \{F_n: (L_1^{X_1}, \mathcal{T}) \rightarrow (L_2^{X_2}, \mathcal{T}_{\delta}): F_n \text{ is L-fuzzy continuous, } n \in D\}$ converges L-fuzzy proximally to the order homomorphism F in $(L_2^{X_2}, \delta_2)$, then $F: (L_1^{X_1}, \mathcal{T}) \rightarrow (L_2^{X_2}, \mathcal{T}_{\delta})$ is also L-fuzzy continuous.

Proof It is simial to Propostion 5.1 and hence omitted.

Propostion 5.3 Let (L_2^Y , δ) be the product of the collection $\left\{ (L_2^{Yt}, \delta_t) \right\}_{t \in T}$ of L-fuzzy proximity spaces. Then the order homomorphism net $S = \left\{ F_n \colon L_1^X \to L_2^Y \colon n \in D \right\}$ converges L-fuzzy proximally to F in (L_2^Y , δ) iff for each $t \in T$, the order homomorphism net $S_t = \left\{ P_t \circ F_n \colon L_1^X \to L_2^{Yt} \colon n \in D \right\}$ converges L-fuzzy proximally to $P_t \circ F$ in (L_2^{Yt} , δ_t).

Proof (\Rightarrow) For $A \in L_1^X$, $B \in L_2^{Yt}$, there exists $D \in L_2^Y$ such that $B = P_t$ (D). Let $P_t \circ F(A) \delta_t P_t(D)$ for each $t \in T$, we shall prove $P_t \circ F_n(A) \delta_t P_t(D)$ eventually.

If $A = \bigvee_{i=1}^{n} A_{i}(A_{i} \in L_{1}^{X})$, $D = \bigvee_{j=1}^{m} D_{j}(D_{j} \in L_{2}^{Y})$, then $P_{t} \circ F_{n}(A) \cdot \overline{b_{t}} P_{t}(D)$ iff $P_{t} \circ F_{n}(A_{j}) \cdot \overline{b_{t}} P_{t}(D_{j})$ for each i and j.

Now suppose there exist io and jo, such that $P_toF_n(A_{lo}) \circ tP_t(D_{lo})$ frequently. By Definition 2.8, F_n (A) o D frequently. Since S converges L-fuzzy proximally to F, hence we have F (A) o D, by L-fuzzy proximity continuous of P_t , $P_toF(A) \circ tP_t(D)$ for each $t \in T$. This is a constradiction, therefore S_t converges L-fuzzy proximally to P_toF .

(\Leftarrow) Let F (A) $\overline{\delta}$ B for each A \in L₁^X, B \in L₂^Y, we shall prove F_n (A) $\overline{\delta}$ B eventually.

Now suppose F_n (A) & B frequently. Since P_t is L-fuzzy proximity continuous, we have $P_t \circ F_n(A) \circ t P_t(B)$ frequently. By the L-fuzzy proximal convergence of S_t for each $t \in T$, $P_t \circ F(A) \circ t P_t(B)$, hence $(\bigvee_{i=1}^n P_t \circ F(A_i)) \circ t (\bigvee_{j=1}^m P_t(B_j))$ for each $t \in T$, by Lemma 2.5 (1), for each $t \in T$, there exist io and josuch that $P_t \circ F(A_{i_0}) \circ t P_t(B_{j_0})$, thus by Definition 2.8, $F(A) \circ B$. This is a constradiction, therefore S converges L-fuzzy proximally to F. This completes the proof.

REFERENCES

- /1/ A.K.Katsaras, J.Math.Anal.Appl. 68 (1979), 100--110.
- /2/ A.K.Katsaras, J.Math.Anal.Appl. 75 (1980), 571--583.
- /3/ A.K.Katsaras, Fuzzy Sets and Systems, 27 (1988), 335--343.
- /4/ Liu Wang-jin, Fuzzy Sets and Systems, 15 (1985), 241--248.
- /5/ Liu Wang-jin, Fuzzy Sets and Systems, 30 (1989), 37--45.
- /6/ P.Srivastava and R.R.L.Gupta, J.Math.Anal.Appl. 78 (1980), 588--597.
- /7/ G.Artico and R.Moresco, J.Math.Anal.Appl. 99 (1984), 320--337.
- /8/ E.G.Juarros, J.D.P.Castrill and M.A.P.Vicente, J.Math.Anal.Appl. 133 (1988), 355--358.
- /9/ R.Lowen, J.Math.Anal.Appl. 56 (1976), 621--633.
- /10/ Wang Gou-jun, Fuzzy Sets and Systems, 12 (1984), 281--288.
- /11/ Liu Ying-ming, Fuzzy Sets and Systems, 21 (1987), 43--51.
- /12/ S.A. Naimpally and B.A. Warrack, Proximity Spaces, Combridge University Press, London, 1970.