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ABSTRACT: The problem which fuzzy connectives are the most appropriate
fordsscribingqmntmsystmintheluguageoffuzzysettheoryis
studied. It is shown that Giles bold union “AUB(X) = min(l,uA(x)+pB(x))

and intersection “AnB(x) = max(O,pA(x)mB(x)-l) are better for this
purpose than Zadeh max and min operations.

I. Introduction.

As soon as quantum mechanics achieved its mature form it became
obvious that the very structure of its experimentally verifiable
propositions differs from the structure of propositions of classical
mechanics [1,2]. It is generally agreed that in classical mechanics a
set of propositions is a Boolean algebra while in quantum mechanics it
should possess the main features of a lattice of closed subspaces of an
infinite-dimensional Hilbert space. Therefore, it should be a partially
ordered orthocomplemented o-orthocomplete orthomodular set, usually
briefly called quantum Logic, admitting full set of probability
measures. For those who are not familiar with these notions we remind
the definitions.

Def.1. By a quantum Logic (or simply a Logic) throughout this paper we

mean partially ordered, orthocomplemented, o-orthocomplete orthomodular

set, i.e. a partially ordered set (abbr. "poset") L in which

(1) the least element O and the greatest element I exist,

(ii) the orthocomplementation map ':L—>L, such that a''=a, ava'=I,
and a<b » b's a' is admitted,

(iii) the 1least upper bound Vi.ﬂi of any sequence of elements

a.,a,a,... such that as a; for ixj, exists in I,
(elements a,b such that asb' are called outhogonal and are denoted aib)
(iv) the orthomodular identity a< b» b= av (a'a b) holds.

We would like to warn the reader accustomed to the fuzzy set notation
that throughout this paper avb and anb denote, respectively, the least
upper bound (join) and the greatest lower bound (meet) of elements a,b €
L with respect to the given partial order < and that they do not dencte
Zadeh max and min fuzzy connectives.

Def.2. By a nrobabilily measure on a logic L we mean a map m :L—>[0,1]
such that m(I) = 1 and m(viai) = Zim(ai) for any sequence of pairwise
orthogonal elements. A set S of probability measures on I is called futl
iff m(a) < m(b) for all me S implies a < b.

Elements of a logic are usually called pionooitions or properlies or
yes-no obsewables and it is assumed that they represent properties of a
physical system. Probability measures on a logic represent states of a
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physical system and therefore they are usually called states on a logic.
If a is a proposition and m is a state then the mumber m{(a)e[0,1] is
interpreted as a probability of obtaining positive result in an
experiment testing a property of a physical system represented by a when
this system is in a state represented by m.

Since for any proposition a and for any state m the number m{a)
belongs to the unit interval, states can be treated as fuzzy subsets of
an universum L, and conversely, propositions can be treated as fuzzy
subsets of an universum S. The second possibility was mentioned in [2],
developed previously in [3,4,5] and it is also the subject of the
present paper.

I1. Fuzzy set approach to quantum logics.

The approach developed in [3,4,5] is based on the following theorem
of Maczynski [6,7].

Theorem.1. (Maczyneki [7], proof in [6]).

(i) If L is a logic with a full set of probability measures S, then
each a € L induces a function a:L —>[0,1] where a(m)=m(a) for all me S.
The set of all such functions L = {a :a € L } satisfies the following
condition :

Orthogomality Postulate: If a.a,--. is a sequence of functions such

that
a+as 1 for izj, (1)

tlmthereexistsgel.suchﬂutg+g1+gz+...=1.

(It is assumed that for one-element sequences the condition (1) is
always satisfied).

L equipped with the natural partial order: a < b iff a(m) < b(m) for
all me S and complementation a'= 1-a is isomorphic to L.

(ii) Conversely, if L < [0,1]X is a set of functions for which the
Orthogonality Postulate is satisfied them it is a logic with resepect to
the natural partial order and complementation. Every point x € X induces
aprobabilitymmen&onLv&nren&(g)a(x) for all a € L and the set

{mx : X € X} is full.

Due to the part (ii) of Theorem 1 we can adopt the following
definition:

Def 2. By a fuzzy quantum Logic we mean any family £ of fuzzy sets which
membership functions satisfy the Orthogonality Postulate.

Let us note that the adjective fuzzy in this definition indicates
only that this logic consists of fuzzy sets. Partial order and
orthocomplementation are in this logic nothing else than the standard
fuzzy set inclusion and complementation. Orthomodularity and
o-orthocompleteness conditions, i.e. conditions (iv) and (iii) of
Definition 1, are satisfied due to the part (ii) of Theorem 1. Fuzzy
quantum logic is not a fuzzyfication of an ordinary quantum logic in the
usual sense of the fuzzyfication procedure. Actually, due to the part
(1) of Theorem 1, any quantum logic with a full set of probability
measures can be represented in a form of a fuzzy quantum logic.

Since in a fuzzy quantum logic £ the Orthogonality Postulate must be
satisfied, £ is certainly not a family of all fuzzy subsets of S and,
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therefore, join v and meet A in £ do npot coincide with Zadeh max and min
fuzzy connectives. The same conclusion follows from the definition of an
orthocomplementation. Since for a genuine fuzzy subset A of an universum
X there exists at least one point x € X such that M(MA(X):MA-(X)) £1,

we see that the condition AvA'= I would be fulfilled for v being the
pointwise maximm only if a quantum logic ¢ consisted exclusively of
crisp subsets of S. However, such a situation is impossible if elements
of £ are supposed to represent propertiese of a physical system: If
different states m ,m of a physical system have to be distinguished

experimentally there should be at least one property of this system,
repreeentedhyaeLSl.lchtmtmi(a)#mz(a). Since the set S of

probability measures on a logic is assumed to be a convex set (see, e.g.
{2]), even if mi(a)=0 and mz(a)=1 there exists m=1>mi+(l-p)m2 with 0<p<1

so m(a)=1-p#0,1 and the property a cannot be described by a crisp subset
of S.

III. The problem of comnectives.

Since we have seen that it is not possible to use Zadeh min and max
connectives as meet and join in a fuzzy quantum logic £, the question
arises if there are other fuzzy comnectives more suitable for this
purpose. We meet here, in the very beginning, the following difficulty:
When we look at the list of comnectives most frequently used in the
fuzzy literature (see, for example, [8,9]) we notice that all of them
are defined in a pointwise manner. On the contrary, meet and join in a
partially ordered set are "global" notions, i.e. even if we deal with a
poset of functions, usually we camnot say what is the value of (fvg)(x)
and (fag)(x) when we know only f(x) and g(x). Generally, to find
(fvg)(x) and (fag)(x) we should know a whole partially ordered set of
functions. However, when a quantum logic is translated with the aid of
Maczynski Theorem into the language of fuzzy set theory, it is not
merely a poset but it has a definite structure imposed by the
Orthogonality Postulate. Already in Maczynski proof of his Theorem we
can find that if g1,g2,... is a sequence of functions such as described

in the Orthogonality Postulate then their meet vigi exists, and
viéi = igi’ (2)
Now, let us notice that if a ,_a_j are membership functions of the fuzzy

subsets Ai ,Aj of the universum S, i.e. if as= ., gj= Hp the
i i

condition

a +a <1 (3)

i J
can be expressed with the aid of Giles [10] 80ld intersection
Ha a a (X) = max(0,py (%) + pp (x) -1) (4)
i j i 3

in the following way

Aiﬂ Aj = @. (5)

Two fuzzy sets satisfying (s) are called wealy disjoind by Giles in
[10]. If A; and Aj are weakly disjoint elements of a fuzzy quantum logic



£, isomorphic, respectively, toai,aje L, then, according to (2) and to
Maczyneki Theorem, a‘vajisim'm:lctoafuzzysluetofsmich
mmpftmctimiseq‘altothealgdtaicmuA+pA.Sincef0t
w&lydisjomtfuz:ymAmdBmalqabnicmoftheirMershm
functions

coincides with the msmbership function of their 8ofd wnion A
B defined by Giles in [10] by

Hp u p(X) = min(u, (X)4up(x),1), (6)
we can see that in a fuzzy quantum logic £
if AnA =@ then AvA =AUA . (7)

J

Bymmnmmmmmfwmmofmirﬁumkh
disjoint elements :

if ANA =g for igj, then VA = U2 (8)

set-theoretic calculus. Therefore, in the sequel, when the word "set" is
used it can be either crisp or fuzzy.

First two useful identities, which poset-theocretic counterparts
mmilyhominwmlogicmmichmmtfulﬁued
by Zadsh operations, were msntioned already by Giles in [10].

Ismma.l. Por any subset A of X

AAAN =¢ (10)
AVA' =X, (11)

Let us now consider the following crisp formuala
AcB iff AnB' =g . (12)

If we replace set-theoretic complemsnt by the standard fuzzy complement
and set-theoretic intersection by Zadeh min comnective we obtain only
the implication

lin(uA,l-uB) =0 « AcB, (13)

hrtthemltemhcatmdoosnattnldfornm-crispsets On the

contrary, if we replace set-theoretic intersection in (12) by Giles bold
intersection, we obtain

ANnB'=¢g iff for all x mx(o,ph(x)ﬂ-un(x)-l) =
= max(0, u, (X)-pp(x)) = 0, (14)
which holds iff A ¢ B. Thus, we have proved the following lemma :
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Lemma.2. For any two sets A,B

AcB iff AnB'=¢g . (15)
With the aid of this lemma we obtain immediately the following
Iemma.3. For any two sets A,B

A=B iff AnB'=¢g and BAA'=¢g . (16)

Let us mention that the analogous useful formula holds in any Boolean
algebra, provided that we replace bold intersection and fuzzy complement
by their Boolesn coumterperts.

Finally, let us note that Zadeh commectives are distributive while
Giles commectives are not. In the domain of quantum logics lack of
distributivity is by no msans a drawback, on the contrary, it is a
virtue since lattices of closed subspaces of Hilbert spaces, contrary to
Boolean algebras, are not distributive.

Bold wmion and intersection studied by Giles in [10] are fuzzy set
coumterparts of scme of many-valued logic operations of Iukasiewicz and
Tarski [11]. The first comperison of these operations and quantum logic
operations was made by Frink already in 1938 [12].
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