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Abstract

A representation theorem of fugzy_observables in fuzzy mea-
surable spaces is presented in [1] . The main tool of [1] is
the Loomis-Sikorski theorem. Another acces, much more simp-
ler, utilizing the structure of fuzzy observables, has been
%reaented in fa]. In this paper, we complete the results of

l. Intraduction
First, we recall the definitions of the basic notions.
2eiinaitlon

A fuzzy quantum space is a couple ({) ,M), where {1 is
a non-empty set and M < <O,1>-O- is a system of fuzzy sub-
sets of {) such that :

(1) if 1,(w) =1 for any well, then 1q € M
(11) if ueM, thenu’=1 - ueM
({11) 1f u €M, n = 1,2,..., then oY, Uy = 8Rp upEM

(dv) ir (%)Q(w) =12= for any we), then (%)_Q_¢ M.

Bafinition 2.
Let (.Q,I) be a fuszsy quantum space. A mapping x:(B—M
is said to be a fuzzy observable of (Q) ,M), if :

1) x(2%) =1 - x(8) for any B€® .o 0o
9 1B E® , n=1,2,..., then x(nt__{l xn) = ¥1 x(E ).

By the letter R we denote a set of all real numbers, by B a
set of all Borel subsets in R and E® denotes a complement of
a set E in R,

According to [4] we denote by K(l) the set of all crisp



subsets A of {l for which there exists a fuzzy subset u€M
such that :

{weQ , u>3}c ac{well, uwh2 ,}} :

It is known ( see [4])that K(M) is a 6-algebra of crisp
subsets or Q) .

h ct £ bs able

According to [3] , let us introduce a function
x(w,.) : R—>40,1> defined by x(w ,t) = x (oo, t))(w) .
Here W is an arbitrary, but fixed element of L) .

From the properties of a fuzzy observable x ((i) and
(11) of the Definition 2) it follows :

1 - x(R)}{w) t £ a,
x(w,t) =< (2.1.)

x (R)w) t > ay
(see also [3]), where a,, is a real number.

Ir x(E)(w))% , then a,, is determined by x and @ uniquel-
1y. In the case x(R)w)= % , 8¢ can be chosen arbitrarily.

o
Now, let E =(-o0,8,,> . Then E =ﬂéoo,aw+ %) .
n=1

Sincex is a §- ~homomorphism , we get oo

x(B)= élx ((- 0o,a,, + %)) .

As x ((-oo,aw+ %))(w) = x(R)(w) , we have x(B)W)= x(R)(w) .
On the other hand, x(E)w)= x((-oo,aw))(w) \"4 x({aw})(w)

and moreover, X ((—oo,aw))(w) = 1 - x(R)(w). These facts im-
ply x({aw}) (W) = xR)(w) .

Bow, let E be any set in 45 . If a,,€ E, then since E
can be expressed in the form E=(E—{aw})u{aw} and x is
a fuzzy observable, we have x(BNw)= x (E - {ay]) V x({ay)).
If we take into account that x(B)< x(R) for any E€ (B and
the previous result x({e,})(w) = x(R)(w), we get x(E)(w) =
= x(R)(wW) .-

In the other case, if aw¢ E, we have EN{a,}= & and apply-



ing the properties of a fuzzy observable x we get
x (BYwIAx({aw])lw) = x(2)w) or x (E)}w)A x (R)w) = 1-x(R)(w) .
Hence x(E)(w)= 1 - x(R)(w). Thus the previous results can
be written in the form :
1 - x(R)(w) 8, ¢ B
x (B)(w) = ¢ (2.2.)
x (R)(w) ay, € B

Due to (2‘.1.) we can define a function
f H Q—"'—,R ’ f(w) s aw (3010)

Eropogition 1.

The function £ :S{)——>R given by (3.1.) is a random
variable on the space (), K(M)).
Broof, Let E be any set in H and let we £) be such element
that x(x)(w)>% . Then due to (2.2.) and the fact 1-x(R)(w)%

< 1 for any we ), it holds x (EXw)= x(R)wW). But this
2

implies f(W)EE, 1.e. We 2 1(E). So we have shown that
{w, x@®@>1] < i(z).

Conversely, let we £ (). Then £/W)EE and from (2.2.) we
get x(B)w)= x(B)w). Since x(R)(w)21 for any we (), it

2
also holds x(x)(w)z% . Thus £~ 1(B) < {w , x(B)(w)2 %} for
any EB€ B . So we have proved that

{w, x@w> il e {w, x@w2 3} (3.2)

holds for any B€(® . (3.2.) together with the fact x(E)ENX
imply the x(!)-measurability of the function f. ///

The main result of Dvurefenskij in [1] is a representa-
tion theorem for fuzzy observables by random variables. We
shall show that the random variable f given by (3.1.) is in
fact Dvurefenskij’s representation of a fuzzy observable x.



Iheoren 1. »
Let x be a fuzzy observable of a fuzzy quantum space

() ,M). Then

(1) There exists a random variable f on the space (.Q., K(H))
such that (3.2.)) , 1i.e.

{w, x@w> 3¢ rHEle]{ w, xE®wW =}
holds for any EE€B.

(1) £ g : Q—>R is any X(M)-measurable function satis-
fying (3.2.), then

{w, twt swlc{w , x@w =3} .

Proof. The statement (i) is an immediate consequence of Pro-
position 1.

Let us suppose that both f and g satisfy (3.2.) . Let W¥* be
any element of Q for which f(w*)# g(w*). Let us denote

E = {£(w¥)]. Bvidently w* € £”1(E). Therefore by (3.2.) we
have w*¢ { w , x(B)w)2 % Jo i e x(E)(w*)Zé .

On the other hand, since f£(w*)# g(w"), we have glw*)¢ B,i.e.

w* & 8-1(3). Thus by (3.2.) CU*¢ {w, x (B)w) > l}. It means
2

x(m)(w*)_é_.; . Summarizing the previous results we obtasn

x (B)w")= 32: . So the statement {ii) is proved. ///

Now, let us consider a random variable f on the space
(L, x(M)) . Since £ is KX(M)-measurable, for any set E. ,

E, =(~eo,r), #€Q / Q 18 the set of all rational numbers /,

there exists a fuzzy set a,. €N such that :

e, a,.(w)>%_} c (s )c{w, s w) 2 %} (3.3.)
Let M =r2 Q( a.Va ). It is clear, that M belongs to

M and /4'2% . Purther, for any reqQ let
A, = (a, AMIV A (3. 4.

It is easy to see, that 4 ,.€M and /“er“é = M. |

Moreover, it holds :



{w, po>%} ¢ £ {0, p 21 ] (3.5.)
for any reqQ.
Indeed, if we consider W€ ) for which (ur(w) >% , then by

(3.4.) and the fact (a«'(w)é% we get a (W) > % « It means

{wr uraw>tlc{w , s w>3} (3.6.)
If we consider W€ L) for which ar(w)Z% , then also

‘r(w)/\ﬂ@)Z%r and by (3.4.)/(1,(60)2% . It means
{w y 8n(w)2 %}Q{w ’ (ar(w)z JZL} (3.7.)
Thus (3.5.) 1s the conclusion of (3.3), (3.6.) and (3.7.).

Now, let us put

M) tw) ¢ B,
x (B Nw) = (3.8.)
AU (W) tlw) € B,

for any r€Q and x(R) =/ .
It can be shown that x(kr)el for any reQ.

Indeed, let r€q and Wef). If £(W)EE, , then by (3.8.)
x (B, ) (W) = MU (W), Since w€E £71(E,), by (3.5.) we have
(ar(w)z L1 . These facts together with /4= M v(a.’r mean
that x(B.)(W) = M _(W). | |

Ir f(w)qénr , then by(3.8.) x(® Jw)= U1W). Simulta-
neously, since w,é f'l(lr) , we get by (3.5.) Ar{a})é% .
Due to the previous properties of AL we get /wa) =/4;(w)
and further x(lr)«d) = (ur((d) . So we have shown

X(lr) = (‘(.rél M for any re&Qq.

Now we are able to prove that any random variable f
on the space (Q,K(H)) induces a fuzzy observable x of the
fuszy quentum space ({) ,M).

First, we give the following defgnition.



Definition 3.
A fuzszy set ueM is said to be a W-empty set, if u<].
2

The set of all W-empty sets from M will be denoted by W_(M).

Iheorem 2.
Let £ be any random variable on the space (L ,k00) .
Then .
(1) There exists a fuzzy observable x of the fuzzy quan-
tum space (SL ,M) with the property (3.2.)
(11) If y is any fuzzy observable of the fuzzy quantum spa-
ce (Q,l) satisfying (3.2.) , then
x(B) A y(&°) € w (%)
for any E cB.
Pxaof, (1) Let E, =(-oo,r), reQ and let us define x(B.) by
(3.8.). By the previous part we have x(Er) = M, € M for any

r&Q. Since {Er’ reQ} is a countable generator of the
system {4 , the function x : #—— M is defined. The proper-
ty (3.2.) of x follows from (3.5.) , the fact x(Br)=(U.r and

the property of the system {Er} req » Meinly A = 6“({31, ,

r GQ}).

(11) Let y is any fuzzy observable of the fuzzy quantum spa-
ce () ,M) satisfying (3.2.) and let E€ (. Then from the
relations

{w, y@)w)>3)c @) {w, y(E)w) 2 12.} and
{w, x(B)(w)> ng}gf'l(n) cH{w, x(B)w): 22.} we get
{w, x@@> 1N {w, y@)w) > 1@ (=)= 7 .

snce {x(®)Ay(29) > 1] <{=®) > 3}N {rE)> 1]

we have {x(E)/\ y (&%) > %} = o , what implies

x(®) A y (&%) £ % , .e. x(B)A y(2%) € w (M), ///
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