### A MOTE ON A REPRESENTATION OF FUZZY OBSERVABLES

A. Kolesárová Katedra matematiky EF SVŠT Ilkovičova 3 812 19 Bratislava R. Mesiar Katedra matematiky SvF SVŠT Radlinského 11 813 68 Bratislava Czechoslovakia

#### Abstract

A representation theorem of fuzzy observables in fuzzy measurable spaces is presented in [1]. The main tool of [1] is the Loomis-Sikorski theorem. Another acces, much more simpler, utilizing the structure of fuzzy observables, has been presented in [2]. In this paper, we complete the results of [2].

### 1. Introduction

First, we recall the definitions of the basic notions.

### Definition 1.

A fuzzy quantum space is a couple  $(\Omega, M)$ , where  $\Omega$  is a non-empty set and  $M \leq \langle 0, 1 \rangle \Omega$  is a system of fuzzy subsets of  $\Omega$  such that:

- (i) if  $l_{\Omega}(\omega) = 1$  for any  $\omega \in \Omega$ , then  $l_{\Omega} \in M$
- (ii) if  $u \in M$ , then  $u' = 1 u \in M$
- (iii) if  $u_n \in M$ , n = 1,2,..., then  $\bigvee_{n=1}^{\infty} u_n = \sup_{n \in M} u_n \in M$
- (iv) if  $(\frac{1}{2})_{\Omega}(\omega) = \frac{1}{2}$  for any  $\omega \in \Omega$ , then  $(\frac{1}{2})_{\Omega} \notin M$ .

### Definition 2.

Let  $(\Omega, M)$  be a fuzzy quantum space. A mapping  $x: \mathcal{B} \longrightarrow M$  is said to be a fuzzy observable of  $(\Omega, M)$ , if :

(i) 
$$x(E^c) = 1 - x(E)$$
 for any  $E \in \mathcal{O}$   $(E_n)$  if  $E_n \in \mathcal{O}$ ,  $n = 1, 2, ..., then  $x(\bigcup_{n=1}^{\infty} E_n) = \bigvee_{n=1}^{\infty} x(E_n)$ .$ 

By the letter R we denote a set of all real numbers, by  $\mathcal{B}$  a set of all Borel subsets in R and  $\mathbf{E}^{\mathbf{c}}$  denotes a complement of a set E in R.

According to [4] we denote by K(M) the set of all crisp

subsets A of  $\Omega$  for which there exists a fuzzy subset  $u \in M$  such that :

 $\{\omega \in \Omega, u(\omega) > \frac{1}{2}\} \subseteq A \subseteq \{\omega \in \Omega, u(\omega) \geq \frac{1}{2}\}.$ 

It is known (see [4])that K(M) is a 6-algebra of crisp subsets of  $\Omega$  .

### 2. The structure of fuzzy observables

According to [3], let us introduce a function  $x(\omega,.): R \longrightarrow \langle 0,1 \rangle$  defined by  $x(\omega,t) = x((-\infty,t))(\omega)$ . Here  $\omega$  is an arbitrary, but fixed element of  $\Omega$ .

From the properties of a fuzzy observable x (i) and (ii) of the Definition 2) it follows:

$$x(\omega,t) = \begin{cases} 1 - x(R)(\omega) & t \leq a_{\omega} \\ x(R)(\omega) & t > a_{\omega} \end{cases}$$
 (2.1.)

(see also [3]), where  $a_{\omega}$  is a real number.

If  $x(R)(\omega) > \frac{1}{2}$ , then  $a_{\omega}$  is determined by x and  $\omega$  uniquely. In the case  $x(R)(\omega) = \frac{1}{2}$ ,  $a_{\omega}$  can be chosen arbitrarily.

Now, let 
$$E = (-\infty, a_{\omega})$$
. Then  $E = \bigcap_{n=1}^{\infty} (-\infty, a_{\omega} + \frac{1}{n})$ .

Since x is a 6-homomorphism, we get  $\infty$   $x(E) = \bigwedge_{n=1}^{\infty} x\left(\left(-\infty, a_{\omega} + \frac{1}{n}\right)\right).$ 

As  $x\left((-\infty,a_{\omega}+\frac{1}{n})\right)(\omega)=x(R)(\omega)$ , we have  $x(E)(\omega)=x(R)(\omega)$ . On the other hand,  $x(E)(\omega)=x\left((-\infty,a_{\omega})\right)(\omega)\vee x\left(\{a_{\omega}\}\right)(\omega)$  and moreover,  $x\left((-\infty,a_{\omega})\right)(\omega)=1-x(R)(\omega)$ . These facts imply  $x(\{a_{\omega}\})(\omega)=x(R)(\omega)$ .

Mow, let E be any set in  $\mathcal{B}$ . If  $\mathbf{a}_{\omega} \in \mathbb{E}$ , then since E can be expressed in the form  $\mathbf{E} = (\mathbf{E} - \{\mathbf{a}_{\omega}\}) \cup \{\mathbf{a}_{\omega}\}$  and x is a fuzzy observable, we have  $\mathbf{x}(\mathbf{E})(\omega) = \mathbf{x} (\mathbf{E} - \{\mathbf{a}_{\omega}\}) \vee \mathbf{x}(\{\mathbf{a}_{\omega}\})$ . If we take into account that  $\mathbf{x}(\mathbf{E}) \leq \mathbf{x}(\mathbf{R})$  for any  $\mathbf{E} \in \mathcal{B}$  and the previous result  $\mathbf{x}(\{\mathbf{a}_{\omega}\})(\omega) = \mathbf{x}(\mathbf{R})(\omega)$ , we get  $\mathbf{x}(\mathbf{E})(\omega) = \mathbf{x}(\mathbf{R})(\omega)$ .

In the other case, if  $a_{\omega} \notin E$ , we have  $E \cap \{a_{\omega}\} = \emptyset$  and apply-

ing the properties of a fuzzy observable x we get  $x(E)(\omega) \wedge x(\{a_{\omega}\})(\omega) = x(\varnothing)(\omega)$  or  $x(E)(\omega) \wedge x(R)(\omega) = 1-x(R)(\omega)$ . Hence  $x(E)(\omega) = 1 - x(R)(\omega)$ . Thus the previous results can be written in the form :

$$x(E)(\omega) = \begin{cases} 1 - x(R)(\omega) & a_{\omega} \notin E \\ x(R)(\omega) & a_{\omega} \in E \end{cases}$$
 (2.2.)

## 3. Representation of fuzzy observables by random variables

Due to (2.1.) we can define a function 
$$f: \Omega \longrightarrow \mathbb{R}$$
,  $f(\omega) = a_{\omega}$  (3.1.)

### Proposition 1.

The function  $f: \Omega \longrightarrow \mathbb{R}$  given by (3.1.) is a random variable on the space  $(\Omega, K(M))$ .

<u>Proof.</u> Let E be any set in  $\mathfrak{B}$  and let  $\omega \in \Omega$  be such element that  $\mathbf{x}(\mathbf{E})(\omega) > \frac{1}{2}$ . Then due to (2.2.) and the fact  $1-\mathbf{x}(\mathbf{R})(\omega) \leq \frac{1}{2}$  for any  $\omega \in \Omega$ , it holds  $\mathbf{x}(\mathbf{E})(\omega) = \mathbf{x}(\mathbf{R})(\omega)$ . But this

implies  $f(\omega) \in E$ , i.e.  $\omega \in g^{-1}(E)$ . So we have shown that  $\left\{ \omega , x(E)(\omega) > \frac{1}{2} \right\} \subseteq f^{-1}(E)$ .

Conversely, let  $\omega \in f^{-1}(E)$ . Then  $f(\omega) \in E$  and from (2.2.) we get  $x(E)(\omega) = x(E)(\omega)$ . Since  $x(R)(\omega) \ge \frac{1}{2}$  for any  $\omega \in \Omega$ , it also holds  $x(E)(\omega) \ge \frac{1}{2}$ . Thus  $f^{-1}(E) \subseteq \{\omega, x(E)(\omega) \ge \frac{1}{2}\}$  for

any  $B \in \mathcal{B}$ . So we have proved that

$$\{\omega, \mathbf{x}(\mathbf{E})(\omega) > \frac{1}{2}\} \subseteq \mathbf{r}^{-1}(\mathbf{E}) \subseteq \{\omega, \mathbf{x}(\mathbf{E})(\omega) \ge \frac{1}{2}\}$$
 (3.2.)

holds for any  $E \in \mathcal{B}$ . (3.2.) together with the fact  $x(E) \in M$  imply the K(M)-measurability of the function f. ///

The main result of Dvurečenskij in [1] is a representation theorem for fuzzy observables by random variables. We shall show that the random variable f given by (3.1.) is in fact Dvurečenskij's representation of a fuzzy observable x.

#### Theorem 1.

Let x be a fuzzy observable of a fuzzy quantum space ( $\Omega$ , M). Then

- (i) There exists a random variable f on the space  $(\Omega, K(M))$  such that (3.2.), i.e.  $\{\omega, x(E)(\omega) > \frac{1}{2}\} \subseteq f^{-1}(E) \subseteq \{\omega, x(E)(\omega) \ge \frac{1}{2}\}$  holds for any  $E \in \mathcal{B}$ .
- (ii) If  $g: \Omega \longrightarrow \mathbb{R}$  is any  $\mathbb{K}(M)$ -measurable function satisfying (3.2.), then  $\{\omega, f(\omega) \neq g(\omega)\} \subseteq \{\omega, x(\mathbb{R})(\omega) = \frac{1}{2}\}$ .

Proof. The statement (i) is an immediate consequence of Proposition 1.

Let us suppose that both f and g satisfy (3.2.). Let  $\omega^*$  be any element of  $\Omega$  for which  $f(\omega^*) \neq g(\omega^*)$ . Let us denote  $\mathbf{E} = \{f(\omega^*)\}$ . Evidently  $\omega^* \in f^{-1}(\mathbf{E})$ . Therefore by (3.2.) we have  $\omega^* \in \{\omega, \mathbf{x}(\mathbf{E})(\omega) \geq \frac{1}{2}\}$ , i. e.  $\mathbf{x}(\mathbf{E})(\omega^*) \geq \frac{1}{2}$ .

On the other hand, since  $f(\omega^*) \neq g(\omega^*)$ , we have  $g(\omega^*) \notin E$ , i.e.  $\omega^* \notin g^{-1}(E)$ . Thus by (3.2.)  $\omega^* \notin \{\omega, \mathbf{x}(E)(\omega) > \frac{1}{2}\}$ . It means  $\mathbf{x}(E)(\omega^*) \leq \frac{1}{2}$ . Summarizing the previous results we obtain  $\mathbf{x}(E)(\omega^*) = \frac{1}{2}$ . So the statement (ii) is proved. ///

Now, let us consider a random variable f on the space  $(\Omega, K(M))$ . Since f is K(M)-measurable, for any set  $E_r$ ,  $E_r = (-\infty, r)$ ,  $r \in \mathbb{Q} / \mathbb{Q}$  is the set of all rational numbers /, there exists a fuzzy set  $a_r \in M$  such that :

$$\{\omega, a_{\mathbf{r}}(\omega) > \frac{1}{2}\} \subseteq f^{-1}(\mathbf{E}_{\mathbf{r}}) \subseteq \{\omega, a_{\mathbf{r}}(\omega) \ge \frac{1}{2}\}$$
 (3.3.)

Let  $\mu = \bigwedge_{r \in Q} (\mathbf{a_r} \vee \mathbf{a'_r})$ . It is clear, that  $\mu$  belongs to

If and 
$$M \ge \frac{1}{2}$$
. Further, for any  $r \in Q$  let
$$M_r = (a_r \land M) \lor M' \qquad (3.4.)$$

It is easy to see, that  $\mathcal{U}_r \in \mathbb{M}$  and  $\mathcal{U}_r \vee \mathcal{U}_r' = \mathcal{U}$ . Moreover, it holds:

$$\left\{\omega, \mu_{\mathbf{r}}(\omega) > \frac{1}{2}\right\} \subseteq f^{-1}(\mathbf{E}_{\mathbf{r}}) \subseteq \left\{\omega, \mu_{\mathbf{r}}(\omega) \ge \frac{1}{2}\right\}$$
for any  $\mathbf{r} \in \mathbb{Q}$ .

Indeed, if we consider  $\omega \in \Omega$  for which  $\mu_{\mathbf{r}}(\omega) > \frac{1}{2}$ , then by (3.4.) and the fact  $\mu(\omega) \leq \frac{1}{2}$  we get  $\mathbf{a}_{\mathbf{r}}(\omega) > \frac{1}{2}$ . It means  $\{\omega, \mu_{\mathbf{r}}(\omega) > \frac{1}{2}\} \subseteq \{\omega, \mathbf{a}_{\mathbf{r}}(\omega) > \frac{1}{2}\}$  (3.6.)

If we consider  $\omega \in \Omega$  for which  $a_r(\omega) \ge \frac{1}{2}$ , then also  $a_r(\omega) \wedge \mu(\omega) \ge \frac{1}{2}$  and by (3.4.)  $\mu_r(\omega) \ge \frac{1}{2}$ . It means  $\{\omega, a_r(\omega) \ge \frac{1}{2}\} \subseteq \{\omega, \mu_r(\omega) \ge \frac{1}{2}\}$  (3.7.) Thus (3.5.) is the conclusion of (3.3.), (3.6.) and (3.7.).

Mow, let us put

$$\mathbf{x}(\mathbf{E}_{\mathbf{r}})(\omega) = \mathbf{f}(\omega) \notin \mathbf{E}_{\mathbf{r}}$$

$$\mathcal{U}(\omega) \qquad \mathbf{f}(\omega) \in \mathbf{E}_{\mathbf{r}}$$

$$(3.8.)$$

for any  $r \in Q$  and  $x(R) = \mathcal{U}$ .

It can be shown that  $x(\mathbb{R}_r) \in \mathbb{R}$  for any  $r \in \mathbb{Q}$ .

Indeed, let  $r \in \mathbb{Q}$  and  $\omega \in \Omega$ . If  $f(\omega) \in \mathbb{E}_r$ , then by (3.8.)  $x(\mathbb{E}_r)(\omega) = \mathcal{U}(\omega)$ . Since  $\omega \in f^{-1}(\mathbb{E}_r)$ , by (3.5.) we have  $\mathcal{U}_r(\omega) \geq \frac{1}{2}$ . These facts together with  $\mathcal{U} = \mathcal{U}_r \vee \mathcal{U}_r$  mean that  $x(\mathbb{E}_r)(\omega) = \mathcal{U}_r(\omega)$ .

If  $f(\omega) \notin \mathbb{E}_r$ , then by (3.8.)  $x(\mathbb{E}_r)(\omega) = \mathcal{M}(\omega)$ . Simultaneously, since  $\omega \notin f^{-1}(\mathbb{E}_r)$ , we get by (3.5.)  $\mathcal{M}_r(\omega) \leq \frac{1}{2}$ . Due to the previous properties of  $\mathcal{M}$  we get  $\mathcal{M}(\omega) = \mathcal{M}_r(\omega)$  and further  $x(\mathbb{E}_r)(\omega) = \mathcal{M}_r(\omega)$ . So we have shown  $x(\mathbb{E}_r) = \mathcal{M}_r \in \mathbb{M}$  for any  $r \in \mathbb{Q}$ .

Now we are able to prove that any random variable f on the space  $(\Omega, K(M))$  induces a fuzzy observable x of the fuzzy quantum space  $(\Omega, M)$ .

First, we give the following defenition.

## Definition 3.

A fuzzy set  $u \in M$  is said to be a W-empty set, if  $u \leq \frac{1}{2}$ . The set of all W-empty sets from M will be denoted by  $W_0(M)$ .

## Theorem 2.

Let f be any random variable on the space  $(\Omega, K(M))$ . Then

- (i) There exists a fuzzy observable x of the fuzzy quantum space  $(\Omega, M)$  with the property (3.2.)
- (ii) If y is any fuzzy observable of the fuzzy quantum space  $(\Omega,M)$  satisfying (3.2.), then

$$x(E) \wedge y(E^{c}) \in W_{o}(M)$$

for any  $E \in \mathcal{B}$ .

Proof. (i) Let  $E_r = (-\infty, r)$ ,  $r \in Q$  and let us define  $x(E_r)$  by (3.8.). By the previous part we have  $x(E_r) = \mathcal{M}_r \in M$  for any  $r \in Q$ . Since  $\{E_r, r \in Q\}$  is a countable generator of the system  $\mathcal{B}$ , the function  $x : \mathcal{B} \longrightarrow M$  is defined. The property (3.2.) of x follows from (3.5.), the fact  $x(E_r) = \mathcal{M}_r$  and the property of the system  $\{E_r\}_{r \in Q}$ , mainly  $\mathcal{B} = \mathcal{B}(\{E_r, r \in Q\})$ .

(ii) Let y is any fuzzy observable of the fuzzy quantum space  $(\Omega, M)$  satisfying (3.2.) and let  $E \in \mathcal{B}$ . Then from the relations

$$\left\{ \omega , y(\mathbf{E}^{c})(\omega) > \frac{1}{2} \right\} \subseteq f^{-1}(\mathbf{E}^{c}) \subseteq \left\{ \omega , y(\mathbf{E}^{c})(\omega) \geq \frac{1}{2} \right\}$$
 and 
$$\left\{ \omega , x(\mathbf{E})(\omega) > \frac{1}{2} \right\} \subseteq f^{-1}(\mathbf{E}) \subseteq \left\{ \omega , x(\mathbf{E})(\omega) \geq \frac{1}{2} \right\}$$
 we get 
$$\left\{ \omega , x(\mathbf{E})(\omega) > \frac{1}{2} \right\} \cap \left\{ \omega , y(\mathbf{E}^{c})(\omega) > \frac{1}{2} \right\} \subseteq f^{-1}(\mathbf{E}) \cap f^{-1}(\mathbf{E}^{c}) = \emptyset$$
 Since 
$$\left\{ x(\mathbf{E}) \wedge y(\mathbf{E}^{c}) > \frac{1}{2} \right\} \subseteq \left\{ x(\mathbf{E}) > \frac{1}{2} \right\} \cap \left\{ y(\mathbf{E}^{c}) > \frac{1}{2} \right\}$$
 we have 
$$\left\{ x(\mathbf{E}) \wedge y(\mathbf{E}^{c}) > \frac{1}{2} \right\} = \emptyset$$
, what implies 
$$x(\mathbf{E}) \wedge y(\mathbf{E}^{c}) \leq \frac{1}{2}$$
, i.e. 
$$x(\mathbf{E}) \wedge y(\mathbf{E}^{c}) \in \mathbf{W}_{0}(\mathbf{M}) \cdot \mathbb{I}$$

# References

- [1] Dwurečenskij, A.: On a representation of observables in fussy measurable spaces. J. Math. Anal. Appl. /submitted/
- [2] Kolesárová, A.: Representation of fuzzy observables. Proceedings of the Second Winter School on Measure Theory. Liptovský Ján, 1990.
- [3] Mesiar, R.: On the sum of general fuzzy observables. Proceedings of the Second Winter School on Measure Theory. Liptovský Ján. 1990.
- [4] Piasecki, K.: Probability of fuzzy events defined as denumerable additivity measure, Fuzzy Sets and Systems 17, 1985, 271-284.