PAN-FUZZY INTEGRAL

Wang Xishao and Ha Minghu

Department of Mathematics, Hebei University, Baoding, Hebei, P.R.CHINA.

The concept of the pan-integral introduced in (17 which establishes the relation between the fuzzy integral and the classical integral is significant. In this paper, we shall introduce a family of functions which is called measurable function class and a kind of universal linear functional which is called pan-fuzzy integral, its some properties will be discussed. Pan-additive fuzzy measure can be regarded as a special example of the pan-fuzzy integral, and the real meaning of the pan-fuzzy integral defined in this paper is lastly given.

1. Preliminaries. It is assumed in this paper that $\overline{R}^+ = [0, +\infty]$, $R^+ = [0, +\infty)$, X is a nonempty set and the function we discussed takes value on \overline{R}^+ and defines in X.

Definition 1.1 Let " \oplus " and " \odot " are two kinds of binary operation on \bar{R}^+ , satisfying the following conditions:

- $(1.1) a \oplus b = b \oplus a \qquad (1.2) (a \oplus b) \oplus c = a \oplus (b \oplus c)$
- (1.3) $a_1 \le b_1$, $a_2 \le b_2 \Rightarrow a_1 \oplus a_2 \le b_1 \oplus b_2$
- (1.4) a \oplus o=a
- (1.5) If $\{a_n\}\subset \overline{\mathbb{R}}^+$, $\{b_n\}\subset \overline{\mathbb{R}}^+$ and $\lim_{n\to\infty} b_n$, $\lim_{n\to\infty} a_n$ exist then $\lim_{n\to\infty} (a_n \oplus b_n) = \lim_{n\to\infty} a_n \oplus \lim_{n\to\infty} b_n$
- (1.6) $a \odot b = b \odot a$ (1.7) $a \odot (b \odot c) = (a \odot b) \odot c$
- $(1.8) \quad (a \oplus b) \odot c = (a \odot c) \oplus (b \odot c)$
- (1.9) $a_1 \le b_1$, $a_2 \le b_2 \Rightarrow a_1 \odot a_2 \le b_1 \odot b_2$
- (1.11) $a \oplus o = o$ (1.11) $a \neq o$, $b \neq o \Rightarrow a \odot b \neq o$

- (1.12) Unit element $I \in \mathbb{R}^+$ exists, such that $I \odot a=a \odot I=a$
- (1.13) If $\{a_n\} \subset \overline{R}^+$, $\{b_n\} \subset \overline{R}^+$, $\lim_{n \to \infty} a_n$ and $\lim_{n \to \infty} b_n$ exist and are finite, then $\lim_{n \to \infty} (a_n \odot b_n) = \lim_{n \to \infty} a_n \odot \lim_{n \to \infty} b_n$
- (1.14) $\lim_{N\to\infty} \min(n, I)=I$ where a, b, c, a, b, $\in \overline{\mathbb{R}}^+$ (i=1, 2), "0" is number zero. Then R is called exchange order-preserving semiring, denoted by $(\overline{\mathbb{R}}^+, \bigoplus, \bigcirc)$.

Example: $(\overline{R}^+, +, \cdot)$; $(\overline{R}^+, \bigvee, \bullet)$ and $(\overline{R}^+, \bigvee, \bigwedge)$ are exchange order-preserving semirings. where " + " and " • " are add operation and multiplication operation of the real number. aVb==max(a, b), aAb=min(a, b), \forall a, b \in \overline{R}^+ . There unit element are 1, 1, + ∞ respectively.

Definition 1.2 Let E be a subset of X, $\chi_{E}(x) = \begin{cases} I & x \in E \\ 0 & x \notin E \end{cases}$ is called characteristic function of E, where I is unit element of $(\vec{R}^{\dagger}, \oplus, \bigcirc)$.

In the following, we suppose that \mathcal{L} is a family of functions, satisfying $\forall \ell, \ell, \ell, \ell, c$, $c, \epsilon \in \mathbb{R}$, such that

- (1) $(c_1 \odot Q_1) \oplus (c_2 \odot Q_2) \in \mathcal{L}$
- (2) $\varphi_1 \wedge \varphi_2$, $\varphi_1 \vee \varphi_2$, $C_1 \varphi_1$, $(\varphi_1 \varphi_2)^{\dagger}$, $\varphi_1 \wedge I$, C_1 , $I \in \mathcal{L}$
- (3) If $\{f_n\}\subset f$, $f_n \nearrow f$ or $f_n \nearrow f$, then $f \in f$

Definition 1.3 Let \mathcal{F} be a function family, such that for an arbitrary monotone function sequences $\{f_n\}_{c,\mathcal{F}}$, if $f(x)=\lim_{n\to\infty}f_n(x)$, then $f\in\mathcal{F}$. \mathcal{F} is called a monotone class.

For every function family \mathcal{F} , the smallest monotone class containing \mathcal{F} is called the monotone class generated by \mathcal{F} , denoted by \mathcal{F} , it is clear that $\mathcal{L}=\mathcal{F}(\mathcal{L})$ and \mathcal{L} is a monotone class.

Definition 1.4 $\forall \varphi \in f$, if there is unique element in $(\mathbb{R}^+ \oplus , \odot)$ corresponding with φ , denoted by $\int \varphi$, satisfying the following

conditions:

- (4) $\forall \emptyset$, \emptyset , ε \mathcal{L} , C, z_0 , C, z_0 then $\int [(C_1 \circ \emptyset_1) \oplus (C_2 \circ \emptyset_2)] = (C_1 \circ \mathcal{L}) \oplus (C_2 \circ \mathcal{L})$
- (5) $\varphi_1 \leq \varphi_2 \Rightarrow \varphi_1 \leq \varphi_2$
- (6) $\{f_n\}\subset f$, $f_n \nearrow f$ or $f_n \lor f$, then $\int f_n \rightarrow \int f$ then $\int \varphi$ is called pan-fuzzy integral of φ on X.
 - 2. Measurable functions and Measurable sets

Definition 2.1 A function f is called measurable function if $f \in \mathcal{L}$, if E is a subset of X and $\chi_{e} f$, then E is called a measurable set. The all of the measurable sets is called a measurable set class generated by f, denoted by f.

Remark: In general, $\mathcal{B}(L)$ is called measurable class. As the special case of this paper, we suppose that L is a monotone class $(L=\mathcal{B}(L))$.

In this section, we have the following results:

Proposition 2.1 If $f_n \in \mathcal{L}$, n=1, 2, ..., and let

(i)
$$g(x)=\sup(f_n(x))$$

(ii) $h(x)=\inf(f_n(x))$

(iii)
$$\overline{f}(x) = \widehat{\lim_{n}} f_{n}(x)$$

(i) $\underline{f}(x) = \underline{\lim}_{n} f_{n}(x)$

then g, h, \bar{f} , \underline{f} are measurable functions.

Proposition 2.2: S(1) is a σ -algebra.

Proposition 2.3: Addunction f is measurable if and only if for every real number a > 0, the set $\{x \mid f(x) > a\}$ is measurable.

3. The pan-additive fuzzy measure defined by pan-fuzzy integral and the meaning of the pan-fuzzy integral

Definition 3.1 $(X, \mathcal{F}, u, \mathbb{R}^+, \mathcal{O}, \mathbb{O})$ is called universal space. where \mathcal{F} is a \mathcal{E} -algebra of subsets of X, u is a fuzzy measure [1] If u satisfies

whenever Eeq. Feq and $E \cap F = \emptyset$, then u is called a pan-additive

fuzzy measure.

In this section, we have mainly the following results: Proposition 3.1 u is pan-additive \Rightarrow u is null-additive [2] Theorem 3.1 Let $u(E) = \int \chi_E \qquad \forall E \in S(L)$. then u is a pan-additive fuzzy measure on S(L).

Theorem 3.2 Let $f \in \mathcal{L}$, i.e., f is measurable, then $f = \int f du$. where $\int f du$ is defined by [1] and u is the pan-additive measure.

We proof only theorem 3.2.

[Proof] Deviding two cases:

- (1) $f = \chi_F$, $F \in S(\mathcal{L})$, then $\int f = u(F) = \int \chi_F du = \int f du$
- (2) Let f be a general measurable function, by proposition3.3, there is a sequence of functions

$$f_n = \bigoplus_{m=1}^{n \cdot 2^n} \left(\underbrace{\frac{m}{2^n}} \otimes \lambda_{n,m} \right)$$

such that
$$f_n \not = f$$
 where $A_{n,m} = \left\{ \begin{array}{l} x \left| \frac{m}{2^n} < f(x) < \frac{m+1}{2^n} \right. \right\}$. Hence
$$f = \lim_{h \to \infty} \int f_n = \lim_{h \to \infty} \int \bigoplus_{m=1}^{n \cdot 2^n} \left(\frac{m}{2^n} \odot \chi_{A_{n,m}} \right)$$

$$= \lim_{h \to \infty} \left[\begin{array}{l} \frac{n \cdot 2^n}{m} \\ m = 1 \end{array} \right] \left(\frac{m}{2^n} \odot \int \chi_{A_{n,m}} \right)$$

$$= \lim_{h \to \infty} \left[\begin{array}{l} \frac{n \cdot 2^n}{m} \\ m = 1 \end{array} \right] \left(\frac{m}{2^n} \odot \mathcal{M}(A_{n,m}) \right) \right] \stackrel{\text{cij}}{=} \int f d\mathcal{M}$$

[Example]:

- (i) Let $(\overline{R}^+, \oplus, \odot)$ be $(\overline{R}^+, +, \cdot)$, \mathcal{L} be all of nonegative measurable functions then f=(L)fdu, where (L)fdu is Lebesgue's integral.
- (ii) Let $(\overline{R}^{\dagger}, \bigoplus, \bigcirc)$ be $(\overline{R}^{\dagger}, V, \Lambda)$, \int be all of nonegative functions (measurable), then $\int f=(s) \int f du$, where u is the pan-addive measure defined in theorem 3.1, and $(s) \int f du$ is Sugeno's fuzzy integral [3], it is defined as $(s) \int f du = \sup \{\alpha \Lambda u(\{x \mid f(x) \geqslant \alpha\})\}$

Reference :

- [1] Yang Qingji, The Pan-integral on The Fuzzy Measure Space, Fuzzy Mathematics (CNINA), 3 (1985), 107-114.
- [2] Wang Zhenyuan, Asymptotic Structural Characteristics of Fuzzy Measure and Their Application, Fuzzy Sets and Systems, 16 (1985), 277-290.
- [3] M. Sugeno, Theory of fuzzy integrals and its applications, Thesis, Tokyo Institute of Technology (1974).