\mathbf{g}_{λ} -measures and conditional \mathbf{g}_{λ} -measures on measure spaces

HUA Wenxiu and LI Lushu
Dept. of Maths., Huaiyin Teacher's College
Jiangsu Province, China (PRC)

In this paper, we introduce the concepts of g_{λ} -measures, conditional g_{λ} -measures and λ -independence associated with a μ -density g on a measure space (X, A, μ) . Some useful results about them are obtained.

Keywords: g_{λ} -measure, conditional g_{λ} -measure, λ -independence.

t. Introduction

In his thesis, M.Sugeno has introduced a class of λ -additive measures g_{λ} (called g_{λ} -measures throughout this paper) on a measurable space (X, \mathcal{A}) [1]. It has been pointed out that if X is a finite set then a g_{λ} -measure on (X, P(X)) is entirely determined by the parameter $\lambda \in (-1, \infty)$ and the numbers $g_1 = g(\{x_i\})$ (i=1,2...n) which are said to be the density of g_{λ} . M.Berres has generalized this fact to a measure space [3]. It has been shown that any g_{λ} -measure can be represented by a density g on a measure space.

In this paper, we present a alternate approach to g_{λ} -measures associated with a μ -density g on a measure space (X, \mathcal{A}, μ) . We also propose the concepts of conditional g_{λ} -measures and λ -independence associated with a μ -density g on a measure space (X, \mathcal{A}, μ) . Some useful results, such as the analoues of Bayes: formula, extension theorem of independent class and Borel-

-Cantelli's lemma, are obtained .

2. g,-Measures on Measure Spaces

We start with the following lemmas:

Lemma 2.1. Suppose g: $X \rightarrow [0, 1]$ is a μ -integrable function on a measure space (X, \mathcal{A}, μ) . Then $G(X) = \int_X \log_{1+\lambda} (1+\lambda g) d\mu$ is a strictly increasing function on $(-1, 0)U(0, \infty)$ and

Lemma 2.2. The Eq. $G(\lambda) = 1$ has a unique root $\lambda \in (-1, 0)U(0, \infty)$ which is positive (negative) when $\int_{\mathbb{X}} g d\mu < 1$ ($\int_{\mathbb{X}} g d\mu > 1$) iff μ and g satisfying

$$\mu(\lbrace 0 < g \leq 1 \rbrace) > 1 \tag{2.1}$$

and
$$\mu(\{g=1\}) < 1$$
 (2.2)

We omit the proofs of lemma 2.1 and lemma 2.2 (cf.[3],[4]). Theorem 2.3. Suppose (X, \mathcal{A}, μ) is a measure space and $g: X \rightarrow [0, 1]$ is a μ -integrable function satisfying (2.1) and (2.2). If $\lambda \in (-1, 0) \cup (0, \infty)$ is the unique root of the Eq. $G(\lambda) = 1$, then $g_{\lambda}: \mathcal{A} \longrightarrow [0, 1]$ defined by

$$g_{\lambda}(\cdot) = \frac{1}{\lambda} \left[(1+\lambda)^{\int_{(\cdot)}^{(\cdot)} \log_{1+\lambda} (1+\lambda g) du} - 1 \right]$$
 (2.3)

is a g_{λ} -measure on (X, A).

Proof. Straightforward.

Remark: When $\int_X g d\mu = 1$ and g_λ is given by (2.3), then limit $g_\lambda(\cdot) = \int_{(\cdot)} g d\mu$ yields a probability measure $g_0 \cdot \lambda \to 0$ We name the function g satisfying (2.1) and (2.2) a μ -density

Congress of the second

and call the g_{λ} given by (2.3) the g_{λ} -measure associated with μ -density g on the measure space (X, \mathcal{A}, μ) .

Obviously, if g_{λ} is a g_{λ} -measure associated with a μ -density g, then $g_{\lambda}^{*}(\cdot) = \log_{1+\lambda}(1+\lambda g_{\lambda}(\cdot)) = \int_{(\cdot)} \log_{1+\lambda}(1+\lambda g) d\mu$ is a probability measure. Moreover, there are the following properties of the g_{λ} -measures associated with μ -density g on (X, A, μ) : Theorem 2.4. g_{λ} is a belief function iff $\int_{X} g d\mu \geq 1$ and it is a plausibility function iff $\int_{X} g d\mu \geq 1$.

By lemma 2.2, the proof of theorem 2.4 is obvious. Theorem 2.5. Suppose $\{A_i\}_1^{\infty}$ are disjoint sets in A. If $\int_{\mathbb{R}_1} \log_{1+\lambda}(1+\lambda g) du = 0 \text{ for all } i, \text{ then } \sum_{i=1}^{\infty} g_{\lambda}(A_i) > , = \text{ or } < g_{\lambda}(U A_i) \text{ iff } \int_X g du > , = \text{ or } < 1, \text{ respectively.}$ Proof. The condition $\int_{A_i} \log_{1+\lambda}(1+\lambda g) du = 0 \text{ ensures } g_{\lambda}(A_i) > 0.$ Since $\sum_{i=1}^{\infty} g_{\lambda}(A_i) > , = \text{ or } < g_{\lambda}(U A_i) \text{ iff } \lambda < , = \text{ or } > 0, \text{ respectively.}$

i=1-tively when $g_{\lambda}(A_i) > 0$ for all i [5], we get the proof of theorem 2.5 from lemma 2.2 immediately.

3. Conditional g_{λ} -Measures and λ -Independence on Measure Spaces

Definition 3.1. Let g be a n-density on a measure space (X, \mathcal{A}, u) .

If $\int_X g du \neq 1$ and $\int_A \log_{1+\lambda} (1+\lambda g) du \neq 0$ $(A \in \mathcal{A})$, we define

$$g_{\lambda}(B|A) = \frac{1}{\lambda} [(1+\lambda)^{\frac{1}{2}} A^{\log_{1+\lambda}(1+\lambda g)} du - 1]$$
 (3.1)

and name $g_{\lambda}(\cdot | \Lambda)$: $A \longrightarrow [0, 1]$ the conditional g_{λ} -measures associated with μ -desity g given A. Where the paremeter λ is the unique root of the Eq. $G(\lambda) = 1$ and

$$\int_{\mathbb{B}|\mathbf{A}} \log_{1+\lambda} (1+\lambda \mathbf{g}) d\mathbf{u} = \int_{\mathbf{A} \cap \mathbb{B}} \log_{1+\lambda} (1+\lambda \mathbf{g}) d\mathbf{u} / \int_{\mathbf{A}} \log_{1+\lambda} (1+\lambda \mathbf{g}) d\mathbf{u}$$

The conditional g_{λ} -measures associated with μ -density g given A have the following properties:

Theorem 3.2. $g_{\lambda}(.|A)$ is a g_{λ} -measure on (X, A) and

$$\log_{1+\lambda}(1+\lambda g_{\lambda}(B|A)) = \log_{1+\lambda}(1+\lambda g_{\lambda}(A \cap B)) / \log_{1+\lambda}(1+\lambda g_{\lambda}(A))$$

for all $B \in A$. Where g_{λ} is given by (2.3).

Theorem 3.3. Suppose $B \in A$ and $\{A_i\}$ are disjoint sets in A satisfying $VA_i \supseteq B$. Then

$$\int_{B} \log_{1+\lambda} (1+\lambda g) d\mu = \sum_{i} \int_{B|A_{i}} \log_{1+\lambda} (1+\lambda g) d\mu \cdot \int_{A_{i}} \log_{1+\lambda} (1+\lambda g) d\mu$$
and
$$\int_{A_{i}|B} \log_{1+\lambda} (1+\lambda g) d\mu = \frac{\int_{B|A_{i}} \log_{1+\lambda} (1+\lambda g) d\mu \cdot \int_{A_{i}} \log_{1+\lambda} (1+\lambda g) d\mu}{\sum_{i} \int_{B|A_{i}} \log_{1+\lambda} (1+\lambda g) d\mu \cdot \int_{A_{i}} \log_{1+\lambda} (1+\lambda g) d\mu}$$

The later is the Bayes' -like formula. The proofs of above theorems are straightforward.

Definition 3.4. Let g be a μ -density on a measure space (X, \mathcal{A}, μ) , $\int_X g du \neq 1$ and λ be the unique root of the Eq. $G(\lambda) = 1$. Sets $A_1, A_2, \ldots A_n (n \geqslant 2)$ are said to be λ -independent associated with μ -density g if, for any $2 \le m \le n$ and any $1 \le k_1 < k_2 < \ldots < k_m \le n$,

$$\int_{1=1}^{m} \frac{\log_{1+\lambda}(1+\lambda g) du}{k_1} = \prod_{i=1}^{m} \int_{A_{k_i}} \log_{1+\lambda}(1+\lambda g) du$$
 (3.3)

Definition 3.5. The sets of the classes $\mathcal{Q} = \{A_t \in \mathcal{A}, t \in T\}$ are said to be λ -independent associated with μ -density g if, for any non-empty finite subset $S \subseteq T$,

$$\int_{S \in S} A_S^{\log_{1+\lambda}(1+\lambda_g) d\mu} = \prod_{S \in S} \int_{A_S} \log_{1+\lambda}(1+\lambda_g) d\mu$$
 (3.4)

A group of classes $\{\mathcal{Q}_t:t\in T\}$ is said to be a \mathcal{N} -independent class associated with \mathcal{N} -density g, if the sets of the class $\mathcal{Q}=\{A_t\in \mathcal{A}| A_t\in \mathcal{Q}_t,t\in T\}$ are \mathcal{N} -independent associated with \mathcal{N} -density g.

On a similar plan we can achieve the analogous results of the λ-independence defined above with the probabilistic case. We only present two important theorems without their proofs here: Theorem 3.6. (Extension theorem of A-independent class) Suppose $\{\mathcal{Q}_{\bullet}, t\in T\}$ is a χ -independent class associated with μ -density g_{\bullet} If for every ter, \mathcal{Q}_{t} is closed under the finite intersections, then $\{o(\mathcal{Q}_t), t \in T\}$ is a λ -independent class associated with μ -den--sity g. Where $\mathcal{O}(\mathcal{Q}_{\mathsf{t}})$ represents the \mathcal{O} -algebra generated by \mathcal{Q}_{t} . Theorem 3.7. (Borel-Cantelli like lemma) Let g be a u-density on a measure space (X, \mathcal{A}, u) and $\{A_n\}_1^{\infty}$ a sequence of sets in \mathcal{A} . (1) If $\sum_{n=1}^{\infty} \int_{A_n} \log_{1+\lambda} (1+\lambda g) d\mu < \infty$, then $\int_{\substack{1 \text{ imit} \\ n \to \infty}} \int_{A_n} \log_{1+\lambda} (1+\lambda g) d\mu = 0$;

(1) If
$$\sum_{n=1}^{\infty} \int_{A_n} \log_{1+\lambda} (1+\lambda g) du < \infty$$
, then $\int_{\substack{1 \text{ imit} \\ n \to \infty}} A_n \log_{1+\lambda} (1+\lambda g) du = 0$;

(2) If
$$\{A_n, n\geqslant 1\}$$
 are λ -independent associated with μ -density g and
$$\int_{\substack{\overline{1 \text{ imit}} \\ n \xrightarrow{} \infty}} A_n^{\log_{1+\lambda}(1+\lambda g)} du = 0, \text{ then } \sum_{n=1}^{\infty} \int_{A_n} \log_{1+\lambda}(1+\lambda g) d\mu < \infty.$$

References

- [1] M. Sugeno, Theory of fuzzy integrals and its applications, Ph.D. Thesis, Tokyo Institute of Techology (1974).
- [2] W.Hua, Some properties of g,-measures, BUSEFAL 26 (1986).
- [3] M. Berres, A-additive measures on measure spaces, Fuzzy Sets and Systems 27 (1988) 159-169.
- [4] Yan Jiaan, Measures and Integrals, (Shan xi Normal University Press 1989).
- [5] Hua Wenxiu and Li Lushu, The g,-measures and Conditional g,-measures on Measurable Spaces, to appear.