INVARIANT SUBSPACE OF FUZZY VECTOR SPACE Vn

WANG HONGXU

Dept. of Basic. Liaoyang Petrochemistry Engineeing Institute Liaoyang, Liaoning, CHINA

ABSTRACT

In this paper we studied the invariant subspace of fuzzy vector space $\mathbf{V}_{n}\text{,}$ and we gave its decition theorem.

Keywords: Fuzzy vector space \mathbf{V}_n , Transformation space of fuzzy vector space \mathbf{V}_n , Invariant subspace of fuzzy vector space \mathbf{V}_n .

FOREWORD

The transformation is important concept in mathematics. In the document (1), it was led into fuzzy mathematics: We gave a fuzzy matrix $R = (r_{ij})_{n \times m}$ and a fuzzy vector $A = (r_{ij})_{n \times m}$

 $(a_1 \dots a_n)$. B = A•R is called the fuzzy transformation. R is called a fuzzy transformation matrix or is abbreviated fuzzy transformation or transformation.

In this paper we preliminarily discussed the transformation space of fuzzy vector space \mathbf{V}_n , the invariant subspace of fuzzy vector space \mathbf{V}_n and gave its dicition theorem.

In this paper we used the symbols and definitions in the documents [2,3] .

- 1 LINEAR TRANSFORMATION OF FUZZY VECTOR SPACE V_n Theorem 1.1 Let A,B $\in V_n$, R $\in \mathcal{M}_{n \times m}$. Then (1) (A \cup B) \circ R = (A \circ R) \cup (B \circ R);
 - (1) $(A \cup B) \circ R = (A \circ R) \cup (B \circ R);$ (2) $(kA) \circ R = k(A \circ R), k \in [0,1].$

Therefore the arbitrary fuzzy transformation is a linear .

Theorem 1.2 Let A_1 , ..., $A_t \in V_n$ are the vector set of a linear dependence, and $R \in \mathcal{M}_{n \times m}$ is a fuzzy transformation of V_n . Then $A_1 \circ R$, ..., $A_t \circ R$ are also a linear dependence. Theorem 1.3 Let A_1 , ..., $A_t \in V_n$ are the set of a linear independence, and $R \in \mathcal{M}_{n \times n}$ is a invertible. Then $A_1 \circ R$, ..., $A_t \circ R$ are a liearly independent. (The definition of a invertible fuzzy matrix see [3]).

Theorem 1.4 Let W is a subspace of V_n , and $R \in \mathcal{M}_{n \times m}$ is a fuzzv transformation of W. Then W R is a subspace of W, where WoR = { B | VAEW, AOR = B}. WOR is called a transformation of W.

Theorem 1.5 Let A₁, ..., A_t ∈ V_n and R ∈ M_{n×m}. If A₁ ∘ R, ..., A_t R are a linearly independent, then A_1 , ..., A_t are also linearly independent.

2 THE INVARIANT SUBSPACE OF FUZZY VECTOR SPACE Vn

Definition 2.1 Let W is a subspace of V_n , and $R \in \mathcal{M}_{n \times n}$ is a transformation of W. If W•R ⊊ W, then W are called a invariant subspace of R.

Example 2.1 For arbitrary $R \in \mathcal{M}_{n \times n}$. Then

- (1) {0} is a invariant subspace of R, where 0 is the fuzzy zero vector in V_n .
- (2) V_n is a invariant subspace of R. Theorem 2.1 Let both W_1 and W_2 are subspace of V_n , and $REM_{n \times n}$. If both W_1 and W_2 are the invariant subspace

of R, then
(1) W₁UW₂ is a invariant subspace of R;

(2) W1 N W2 is a invariant subspace of R. Theorem 2.2 Let $REM_{n \times n}$ is a transformation of V_n .

We define that $W(\delta) \triangleq \{A \mid A = (a_1 ... a_n), \forall a_i \leq \delta, \delta \in \{0,1\}\}.$ Then W(S) is a invariant subspace of R. Theorem 2.3 Let a subspace W of $V_{
m n}$ is a invariant subspace of both transformation $R \in \mathcal{M}_{n \times n}$ and $T \in \mathcal{M}_{n \times n}$. Then

(1) W is a invariant subspace of RUT;

(2) WOR is a invariant subspace of R;

(3) WeR is a invariant subspace of T;
(4) W is a invariant subspace of R, where m is an arbitrary positive integer;

(5) W is a invariant subspace of KR, where we[0,1];

(6) Let $f(R) = \lim_{k=0}^{m} d_k R^k$, where $d_i \in [0,1]$, (i=0,1, ..., m), $R^{\circ} = I_{n^{\bullet}}$ Then W is a invariant subspace of f(R). Theorem 2.4 Let a finitely generated subspace W of V_n is a subspace of R, R is a invertible, and A1, ..., At are a basis of W. Then

(1) $A_1 \cdot R$, ..., $A_t \cdot R$ are a basis of W;

(2) W is a invariant subspace of R-1.

Theorem 2.5 (The decition theorem of the invariant subspace of fuzzy vector space V_n) Let $W = L(A_1, ..., A_t)$, $\forall A_i$

 $\mathbf{\epsilon}$ V_n . Then W is a invariant subspace of R if and only if $\mathbf{A_1}^{\bullet}\mathbf{R}$, ..., $\mathbf{A_t}^{\bullet}\mathbf{R}$ $\mathbf{\epsilon}$ W.

Theorem 2.6^{(4)^c} Let R = $(r_{ij})_{n \times n}$ is a transformation of

 V_n , and let $r_0 = \bigwedge_j (Y_{ij})$, $W = \{A | A = (M ... M), M \le r_0 \}$. Then W is invariant subspace of R.

Theorem 2.7 Let W is a finitely generated subspace of V_n , and $R = aI_n$, a $\in [0,1]$. Then W•R is a invariant subspace of R.

Theorem 2.8 Let W is a finitely generated subspace of V_n , and $R = (r_{ij})_{n \times n}$. If $A_i = (a_{i1} \dots a_{in})$, $(i=1, \dots, t)$ are a basis of W, and evrey element of R satisfies $r_{ij} \ge \max_{i,j} \{a_{ij}\}$, $1 \le i, j \le n$.

Then W is a invariant subspace of R.

REFERENCE

- 1 HE ZHONGXIONG, Fuzzy Mathematics And Its Application, Shang Hai Publishing house of Science And Technology, Shang Hai, China, 1983, 183-189
 - 2 Wang Hongxu, BUSEFAL, 1986, 27: 88-93
 - 3 Wang Hongxu BUSEFAL, 1988, 34:107-116
- 4 Lien Fuduan, Fuzzy Vector Space, See the of First Annual Meeting of Fuzzy Mathematics And Systems Society of China, Wu Han in China, 1983