FUZZY OBSERVABLES AND FUZZY RANDOM VARIABLES

Radko MESIAR, Slovac Technical University, Radlinského 11,813 68 Bratislava, Czechoslovakia

Krzysztof PIASECKI, Dept. of Mathematics, Academy of Economics, ul. Marchlewskiego 146/150, 60-967 Poznan, Poland

1. Introduction

Let (Ω, \mathcal{S}) be a measurable space, where \mathcal{S} is a σ -algebra of crisp subsets of Ω . A random variable f is a mapping, $f:\Omega \longrightarrow R$, whose inverse f^{-1} is a σ -homomorphism of Borel subsets of real line to \mathcal{S} , $f^{-1}:\Omega \longrightarrow \mathcal{S}$,

$$f^{-1}/E^{c}/ = (f^{-1}/E/)^{c}$$
 and $f^{-1}/UE_{i}/ = Uf^{-1}/E_{i}/$.

There are several ways how to generalize the notion of a random variable to the fuzzy case. We'll deal with two accesses. In the first one we generalize the underlaying measurable space and we deal with the inverse f⁻¹ generalization. This access was used by Dvurečenskij and Riečan in [1] and by Mesiar in [4]. The main idea of the second access is a generalization of the real numbers. This approach was used by Klement in [3].

The main purpose of this paper is to show that the first approach is / via representation / a special case of the second one.

2. Fuzzy observables

Let (Ω, M) be a fuzzy quantum space, see [1], i.e. M is a soft fuzzy σ -algebra of fuzzy subsets of Ω ,

$$0_{\Omega} \in \mathbb{M} \qquad /1/$$

$$(m \in \mathbb{M} \implies m' = 1 - m \in \mathbb{M} \qquad /2/$$

$$\{m_i\} \in \mathbb{M} \implies m' = \sup\{m_i\} \in \mathbb{M} \qquad /3/$$

$$\frac{1}{2}/\Omega \notin \mathbb{M} \qquad /4/$$

Dwurečenskij and Riečan in [1] have defined a fuzzy observable x as a ε -homomorphism, $x: \mathcal{B} \to M$,

$$x/E^{C} / = (x/E/)^{e}$$

$$x/UE_{i} / = Vx/E_{i} /$$

$$/6/$$

We recall here some results - for more details see [1,2] .

Proposition 2.1. x is a fuzzy observable on (Ω, M) iff the system $\{b/t/, t \in R\}$, $b/t/ = x/]-\infty$, t[/, has the following properties:

$$t \le s \Longrightarrow b/t/ \le b/s/$$
 /7/

$$\left(\bigvee_{\mathbf{t}\in\mathbb{R}}\mathbf{b}/\mathbf{t}/\right)^{\bullet} = \bigwedge_{\mathbf{t}\in\mathbb{R}}\mathbf{b}/\mathbf{t}/$$
/8/

$$\bigvee b/t/ = b/s/ \quad \forall s \in \mathbb{R}$$

$$t < s$$

$$b/t/V(b/t/)^s = b/s/V(b/s/)^s \forall t, s \in \mathbb{R}$$
 /10/

Conversely, if a system $\{b/t/, t \in R\} \subset M$ has properties /7/-/10/, then there exists unique fuzzy observable x such that $x/-\infty$, t[/=b/t/ for any real t.

Definition 2.1. Let x, y be two fuzzy observables on (Ω, M) .

Then their sum z = x + y is uniquely determined by the system $\{z/]-\infty$, $t[/, t \in R]$, where

$$z/]-\infty$$
, $t[/=\bigvee_{r\in Q}(x/]-\infty$, $r[/\wedge y/]-\infty$, $t-r[/)$, /11/

Q is the set of all rational numbers

3. Fuzzy-valued random variables

Klement in [3] presents a concept of the fuzzy real line.

A nonfuzzy real number r is there identified with the Dirac distribution $\int_{\mathbf{r}} = 1_{]\mathbf{r},+\infty[}$. A fuzzy number p is a function, p: $\overline{\mathbf{R}} \to [0, 1]$, $\overline{\mathbf{R}} = \mathbf{R} \cup \{-\infty, +\infty\}$, such that

$$p/-\infty/=0$$
 and $p/+\infty/=1$ /12/

$$\forall r \in \mathbb{R}$$
: $p/r/ = \sup \{p/s/, s < r\}$. /13/

A natural interpretation of a fuzzy number p is the following: p/r/ is the degree to which p is less than the /nonfuzzy/ number r. For the fuzzy arithmetics are used the quasi-inverses p^i of fuzzy numbers $p, p^i \colon [0, 1] \longrightarrow \overline{R}$,

$$p^{1}/0/=-\infty$$
 /14/

$$p^{i}/s/ = \sup \{r \in \overline{R}, p/r/\langle s \}, s \in]0, 1]$$
 /15/

Then

$$p \le q \iff p^i/a \le q^i/a$$
 $\forall a \in [0, 1]$ /16/
 $p/r/ = \sup \{ a \in [0, 1], p^i/a \le r \} \forall r \in \mathbb{R}$ /17/

$$(p \oplus q)^{i}/a/ = p^{i}/a/ + q^{i}/a/ \forall a \in [0, 1]$$
 /18/

The /extended/ fuzzy real line $\overline{R}/I/$ is the set of all fuzzy numbers p. $\overline{R}/I/$ can be embedded naturaly into $\begin{bmatrix} 0 & 1 \end{bmatrix}$ \overline{R} equipped with the product \mathfrak{G} -algebra.

<u>Definition 3.1.</u> Let(Ω , \mathcal{Y}) be a measurable space. Any measurable function X, X: $\Omega \longrightarrow \overline{\mathbb{R}}/\mathbb{I}/$ will be called fuzzy-valued random variable, briefly fuzzy random variable.

For more details see [3]

4. Fuzzy random variable representation of fuzzy observables

Let a fuzzy quantum space (Ω, M) be given. Then it induces a classical measurable space $(\Omega, K/M/)$, see [5], where $K/M/ = \{A \subset \Omega, \exists M \in M, \{M > \frac{1}{2}\} \subseteq A \subseteq \{M \geq \frac{1}{2}\}\}./19/$ Let x be a fuzzy observable. Let $\omega \in \Omega$ and $r \in R$. Then we can

 $x/]-\infty$, $r[//\omega/=x/\omega$, r/ /20/

as the degree to which the "number" x/ω / is less than r. For $\pm \infty$ we define x/ω , $-\infty$ / = 0 and x/ω , $+\infty$ / = 1. Similar approach in the case of classical random variable leads to the nonfuzzy real number f/ω /, namely to its representation in R/I by $G_{f/\omega}$ /.

Proposition 4.1. For $\forall \omega \in \Omega$, \mathbf{x}/ω is a fuzzy number of $\overline{\mathbf{R}}/\mathbf{I}$. Proof: It is enough to show for every real \mathbf{r} the validity of /13/, i.e. \mathbf{x}/ω , $\mathbf{r}/=\sup\{\mathbf{x}/\omega,\mathbf{s}/,\mathbf{s}<\mathbf{r}\}$. But this is implied by /9/ in Proposition 2.1.

Proposition 4.2. Let x be a fuzzy observable. Then there exist a random variable f on the space $(\Omega, K/M/)$ and a fuzzy subset $v \in M$, $v \ge \frac{1}{2}$, such that, for every $\omega \in \Omega$, the fuzzy number x/ω / is of the next form:

$$x/\omega$$
, $r/=\frac{1-v/\omega}{if r \le f/\omega}$, $r \in \mathbb{R}$
 v/ω / if $r > f/\omega$ /, $r \in \mathbb{R}$

Proof: We use /7/-/10/ of Proposition 2.1. /10/ implies x/ω , t/\vee (x/ω , t/)' = x/ω , s/\vee (x/ω , s/)' = $x/R//\omega$ / for any t, $s \in R$. Denote $v = x/R/\in M$. It is easy to see that $v \geq \frac{1}{2}$. Then x/ω , $r/ = v/\omega$ / or x/ω , $r/ = 1 - v/\omega$ / for every real r. If x/ω , $r/ = v/\omega$ / for all $r \in R$, then /8/ implies v/ω / = v'/ω /, so that v/ω / = $\frac{1}{2}$. Similar is the case x/ω , $r/ = 1 - v/\omega$ / for all $r \in R$. If v/ω / > $\frac{1}{2}$, then /7/ and /9/ imply the existence of a real number f/ω / such that /2/ holds. For those $\omega \in \Omega$, for which v/ω / = $\frac{1}{2}$, we define f/ω / = 0.

The measurability of f follows from the next facts:

 $\mathbf{x}/\mathbf{f}/\omega ///\omega / = \mathbf{v}/\omega /$ $\mathbf{x}/\mathbf{E}/\epsilon \, \mathbb{M} \quad \forall \mathbf{E} \epsilon \, \mathcal{B}$ $\mathbf{f}^{-1}/\mathbf{E}/ = \{\omega \epsilon \Omega, \, \mathbf{f}/\omega / \epsilon \, \mathbf{E}\} = \frac{\{\omega, \, \mathbf{x}/\mathbf{E}//\omega / > \frac{1}{2}\} \text{ if } 0 \epsilon \, \mathbf{E}}{\{\omega, \, \mathbf{x}/\mathbf{E}//\omega / \geq \frac{1}{2}\} \text{ if } 0 \epsilon \, \mathbf{E}}$

/24/

Now, it is easy to see that $f^{-1}/E/\in K/M/$ for any Borel subset E .

Corellary 4.1. Let x be a fuzzy observable on a fuzzy quantum space (Ω, M) . Then, the function $X: \Omega \longrightarrow \overline{\mathbb{R}}/\mathbb{I}/$, $X/\omega/=x/\omega/ \ \forall \omega \in \Omega$, is a fuzzy random variable on $(\Omega, 2^{\Omega})$. Corellary 4.2. Let (Ω, M) be a fuzzy quantum space and X let be a fuzzy random variable on $(\Omega, 2^{\Omega})$ such that there exist a random variable f on $(\Omega, K/M/)$ and a fuzzy subset $v \in M$, $v \geq \frac{1}{2}$, so that for each $\omega \in \Omega$, $r \in \mathbb{R}$, is satisfied /21/ for $X/\omega//r/$. Then there exists unique fuzzy observable x on (Ω, M) such that $x/\omega/=X/\omega/$.

Corollaries 4.1. and 4.2. show that the approach of Dvurečen-skij and Riečan is a special case of the Klement's one. Similar is the situation if we take into account a general fuzzy observable defined by Mesiar in [4]. Presented representation preserves the algebraic structure.

<u>Proposition 4.3.</u> Let x, y be two fuzzy observables on a fuzzy quantum space (Ω, M) and let z = x + y. Then for corresponding fuzzy random variables we have $Z = X \oplus Y$.

Proof: Due to Proposition 2.1. it is enough to prove $Z/\omega/t/=z/\omega$, t / for any teR. We have $Z/\omega/t/=\sup\{a\in[0,1], Z^i/\omega/a/< t\}=$ = $\sup\{a\in[0,1], X^i/\omega/a/+Y^i/\omega/a/< t\}=$

a in the brackets cannot be greater then $v_x/\omega/$, as in that case $\sup \{ r, X/\omega//r/< a \} = +\infty$. Similarly $a \le v_y/\omega/$, so that $a \le (v_x \wedge v_y)/\omega/$. If $a = (v_x \wedge v_y)/\omega/$, then $\sup \{ r, X/\omega//r/< a \} + \sup \{ s, Y/\omega//s/< a \} = f_x/\omega/+f_y/\omega/$. It follows

 $Z/\omega //t/ = (v_x \wedge v_y)/\omega / \text{ for } t > f_x/\omega / + f_y/\omega / .$ Analogously for t \le f_x/\omega / + f_y/\omega / we get $Z/\omega //t/ = 1 - (v_x \wedge v_y)/\omega / .$

On the other hand, by Definition 2.1. we have defined the sum z. We have

$$z/\omega, t/ = \bigvee_{\mathbf{r} \in \mathbf{Q}} (X/\omega//\mathbf{r}/\Lambda Y/\omega//\mathbf{t}-\mathbf{r}/) =$$

$$= \frac{1 - (\mathbf{v_x} \wedge \mathbf{v_y})/\omega}{\mathbf{v_x} \wedge \mathbf{v_y}/\omega} \text{ if } t \leq f_x/\omega / + f_y/\omega /$$

$$= \mathbf{v_x} \wedge \mathbf{v_y}/\omega / \text{ if } t > f_x/\omega / + f_y/\omega / .$$

All these facts imply the Proposition.

Remark 4.1. In the similar way we can show the existence of the product of two fuzzy observables, z = x.y. In this case we have z = x.y. if $z = f_x.f_y$ and $v_z = v_x \wedge v_y$.

References

- [1] Dwurečenskij, A., Riečan, B.: On joint observables for F-quantum space. Busefal 35, 1988, 10-14.
- [2] Dvurečenskij, A., Tirpáková, A.: A note on a sum of observables in F-quantum spaces and its properties. Busefal 35, 1988, 132-137.
- [3] Klement, E.P.: Strong law of large numbers for random variables with values in the fuzzy real line. Communications IFSA, 1987, Math. Chapt., 7-11.
- [4] Mesiar, R.: A note to the fuzzy observables. Busefal 40, 1989, 50-53.
- [5] Piasecki, K.: Some new results for fuzzy P-measures. Busefal 33, 1987, 76-85.