ON ONE PROBLEM OF SET-VALUED MEASURES

LADISLAV ZSILINSZKY

1. Introduction

This paper is a contribution to the theory of set-valued measures and q-o-algebras. Our main goal is to prove a version of Costé's theorem ([2]) about the convexity of the closure of values of nonatomic set-valued measure of bounded variation on q-o-algebra.

Throughout this paper, let X be a nonvoid abstract set. The symbol \mathcal{A} will stand for a q-c-algebra of subsets of X, i.e. \mathcal{A} is the class of subsets of X with properties:

- i) $x \in \mathcal{A}$,
- ii) $A \in \mathcal{A}$ implies $A^{c} \in \mathcal{A}$,
- iii) $A_i \in \mathcal{A}$, $A_i \land A_j = \emptyset$, $i \neq j = 1, 2, ...$, implies $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$.

In this context $A^{\mathbf{C}}$ means the complement of the set $A\subset X$. Let Z be a nonempty system of subsets of X. Let S(Z), S(Z) and S(Z) denote the algebra, S-algebra and Q-S-algebra generated by Z, respectively.

The symbol Y will stand for a real Banach space with norm | | will and

let 2^{Y} be the family of all nonempty subsets of Y. Denote by clB the closure of B \in 2^{Y} .

A Banach space Y is said to have the Radon_Nikodym property (RNP) if for each finite measure space $(\Omega, \mathcal{G}, \nu)$ and each ν -continuous Y-valued measure $m: \mathcal{G} \to Y$ of bounded variation, there exists a Bochner integrable function $f: \Omega \to Y$ such that $m(A) = \int_A f \ d\nu$ for all $A \in \mathcal{G}$. Dunford and Pattis [4] and Phillips [7] showed, that every separable dual space and every reflexive space has the RNP.

For BcY let us define the number ||B|| by ||B||= sup ||b|| .

A set-valued function M: $A \to 2^Y$ is said to be countably additive 00 if $M(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} M(A_i)$ for every sequence $\{A_i\}_{i=1}^{\infty}$ of pairwise disjoint elements of A_i , where given a sequence $\{B_i\}_{i=1}^{\infty}$ in 2 the sum $\{A_i\}_{i=1}^{\infty}$ is defined as follows:

 $\sum_{i=1}^{\infty} B_{i} = \{ y \in Y: y = \sum_{i=1}^{\infty} y_{i} \text{ (unconditionally convergent)}, y_{i} \in B_{i}, i \ge 1 \}.$

A map M: $A \rightarrow 2^{Y}$ is said to be a set-valued measure if M is countably additive and M(\emptyset)= $\{0\}$.

Let M: $\Rightarrow 2^{\Upsilon}$ be a set-valued measure. For each $A \in \mathcal{A}$ define $\|M\|$ (A) = sup $\sum_{i=1}^{n} \|M(A_{i})\|$

where the supremum is taken over all finite partitions $\{A_1, A_2, \dots, A_n\}$ of A. A set-valued measure M is said to be of bounded variation if $\|M\|(X) < \infty$.

An element $A \in \mathcal{A}$ is said to be an atom of a set-valued measure $M: \mathcal{A}-2^{\Upsilon}$, if $M(A) \neq \{0\}$ and if either $M(B) = \{0\}$ or $M(A \setminus B) = \{0\}$ holds for every $B \subset A$, $B \in \mathcal{A}$. A set-valued measure having no atoms is said to be nonatomic.

In our further considerations takes an important place the notion dyadic structure of a set $A \in \mathcal{A}$. The notation of the dyadic structure of $A \in \mathcal{A}$ is a collection of sets $A(\mathcal{E}_1 \ \mathcal{E}_2 \cdots \mathcal{E}_k) \in \mathcal{A}$, where $\mathcal{E}_1 = 0,1$ and $k=1,2,\ldots$ such that

Theorem 1. Assume that Y has the RNP. Let $M: \mathcal{A} \to 2^Y$ be a non-atomic set-valued measure of bounded variation. Then clM(A) is convex for every $A \in \mathcal{A}$.

Before starting the proof of Theorem 1 we shall formulate a few propositions and lemmas.

Lemma 2. Suppose that for X there exists a dyadic structure $D_0 = \left\{ \begin{array}{ll} \mathbb{A}(\xi_1 \dots \xi_k), & k \geqslant 1 \end{array} \right\} \text{ Denote } D = D_0 \cup \left\{ \emptyset \right\} \text{ and } \mathcal{A}_0 = s(D). \text{ Then } \\ \mathcal{A}_0 = \left\{ \begin{array}{ll} 0 & \mathbb{A}_i \colon \mathbb{A}_i \in D, & n \geqslant 1 \end{array} \right\} \text{ holds.}$

Proof. Let $P = \{ \bigcup_{i=1}^{n} A_i : A_i \in D, n \ge 1 \}$. It is obvious that $A_i \ge P$.

Conversely it is sufficient to show that

- i) $A,B \in P$ implies $A \cup B \in P$,
- ii) $A \in P$ implies $A^C \in P$.

The proof of i) is trivial. From the construction of the dyadic structure D follows, that $A \cap B \in P$ for $A, B \in P$. Let $A \in P$ be arbitrary, then $A = \bigcup_{i=1}^{n} A_i$, $A_i \in D$ where $A_i = A(\mathcal{E}_1^i, \dots, \mathcal{E}_k^i)$

for certain $k_i > 1$ (i=1,2,...,n). Then it is easy to show that $A_i^c = \bigcup_{j=1}^k A(\xi_1^i \dots \xi_{j-1}^i \delta_j^i), \text{ where } \delta_j^{i=1} = \xi_j^i \text{ (j=1,2,...,} k_i). \text{ From this we can derive, that } A_0^c P. \text{ This concludes the proof.}$

We know ([6]), that $\sigma_{\mathbf{q}}(\mathbf{Z}) = \sigma(\mathbf{Z})$ iff $\mathbf{E} \cap \mathbf{F} \in \sigma_{\mathbf{q}}(\mathbf{Z})$ for all $\mathbf{E}, \mathbf{F} \in \mathbf{Z}$.

From Lemma 2 the following proposition follows.

Proposition 3. Let $\#_1=6(\#_0)$. Then $\#_1 \subset \#_0$.

Proposition 4. Let M: $A \to 2^{Y}$ be a set-valued measure. Then the set function $\| M \|$ defined by (1) is non-decreasing on A.

Proof. Let $A,B \in \mathcal{A}$, $A \supset B$ and $\{B_1, \dots, B_n\} \subset \mathcal{A}$ be an arbitrary partition of B. Putting $B_0 = A - B$ we obtain $B_0 \in \mathcal{A}$, $B_0 \cap B_1 = \emptyset$ for all $i=1,2,\dots,n$, $A = \bigcup_{i=0}^n B_i$, thus $\{B_i\}_{i=0}^n$ is a partition of A. It means, that the followint holds:

Lemma 5. Let V be a measure on a ring $\mathcal Q$ and V^* the Caratheodory extension of V to $\sigma(\mathcal Q)$. Then V^* has no atom of finite measure iff the following condition holds:

For each AcQwith 0 $\langle V(A) \rangle \langle \infty \rangle$ the set $\langle V(E) \rangle \langle E \rangle$

Lemma 5 is proved in [1].

Proof of Theorem 1.

Without loss of generality we may assume A=X and that $M(X) \neq \{0\}$. It follows from the nonatomicity of M, that there exists a set $A(0) \in \mathcal{A}$ such, that $\emptyset \subseteq A(0) \subseteq X$ and $M(A(0)) \neq \{0\}$, $M(X \setminus A(0)) \neq \{0\}$. Denote by $A(1)=X \setminus A(0)$. Then holds $A(0) \cup A(1)=X$, $A(0) \cap A(1) \neq 0$ and $A(1) \in \mathcal{A}$. The repetition of the procedure just described will give us a dyadic structure $D_0 = \{A(\mathcal{E}_1 \ \mathcal{E}_2 \dots \mathcal{E}_k), \ k \geqslant 1\}$ for X such, that for every set $A \in D$, holds $A \in \mathcal{A}$ and $M(A) \neq \{0\}$.

To show the convexity of clM(X) it is sufficient to prove that if $x_1, x_2 \in M(X)$ and $0 < \lambda < 1$, then $\lambda x_1 + (1-\lambda)x_2 \in clM(X)$.

So choose arbitrary $x_1, x_2 \in M(X)$ and 0 < x < 1. We can find elements $x_1(\ell_1 \dots \ell_k), x_2(\ell_1 \dots \ell_k) \in Y$ where $\ell_i \in \{0,1\}$ and $k=1,2,\dots$, such that

i)
$$\mathbf{x}_{j}(\xi_{1}...\xi_{k}) \in M(\mathbf{A}(\xi_{1}...\xi_{k})),$$

ii) $\mathbf{x}_{j}(0) + \mathbf{x}_{j}(1) = \mathbf{x}_{j},$ (2)
iii) $\mathbf{x}_{j}(\xi_{1}...\xi_{k}0) + \mathbf{x}_{j}(\xi_{k}...\xi_{k}1) = \mathbf{x}_{j}(\xi_{k}...\xi_{k})$ (j=1,2).

In Proposition 3 we have shown, that putting $\mathcal{A}_0 = s(D)$, $\mathcal{A}_1 = \sigma(\mathcal{A}_0)$ holds that

$$\mathcal{A}_1 \subset \mathcal{A}_2$$
 (3).

This is a very useful relation, because the most of further considerations will be based on the fact, that in consequence of (3) we can work on the 6-algebra \mathcal{H}_1 .

Taking in view the structure of \mathcal{A}_0 and relations i)-iii) in (2) we can define additive set-functions $m_j: \mathcal{A}_0 \to Y$ (j=1,2) as $m_j(A)=x_j(A)$ for $A\in D_0$ and $m_j(A)=\sum_{i=1}^n m_j(A_i)$ for $A=\bigcup_{i=1}^n A_i\in \mathcal{A}_0$, $A_i\in D_0$

Let us define a set-function $\mathcal{M}: \mathcal{A}_1 \rightarrow \langle 0, \infty \rangle$ as

It follows that $\mu(A) \leq \|M\|$ (A) for every $A \in \mathcal{F}_1$. Since M is of bounded variation and $\|M\|$ is non-decreasing, we conclude, that μ is a finite measure on \mathcal{F}_1 .

We know, that $\not \star_0$ is dense in $\not \star_1$ in the topology induced by the pseudo-metric $\rho: \not \star_1 \times \not \star_1 \to \langle 0, \infty \rangle$ defined by

$$\mathcal{O}(A,B)=\mathcal{O}(A \triangle B)$$
 for $A,B \in \mathcal{A}_1$, where $A \triangle B=(A \cap B) \cup (B \cap A)$ ([6]).

There holds, that

 $\|\mathbf{m}_{\mathbf{j}}(\mathbf{A})\| \leq \mathcal{M}(\mathbf{A})$ for $\mathbf{A} \in \mathcal{M}_0$ (j=1,2). In this case ([3]) there exist extensions $\widetilde{\mathbf{m}}_{\mathbf{j}} \colon \mathcal{M}_1 \longrightarrow \mathbf{y}$ of the set functions $\mathbf{m}_{\mathbf{j}} \colon \mathcal{M}_0 \longrightarrow \mathbf{y}$ such, that $\widetilde{\mathbf{m}}_{\mathbf{j}}$ are vector measures on \mathcal{M}_1 and

$$\|\widetilde{\mathbf{m}}_{\mathbf{j}}(\mathbf{A})\| \leq h(\mathbf{A})$$
 for every $\mathbf{A} \in \mathcal{F}_1$ (4).

Denote these extensions by the same symbols m;

Let us show, that w is nonatomic. By Lemma 5 we need to show the following condition:

if $A \in \mathcal{F}_0$, $0 \le \mathcal{N}(A) \le \infty$, then for every $\varepsilon > 0$ there exists $B \in \mathcal{F}_0$, $B \in A$ such, that

So let $A \in \mathcal{A}_0$ be arbitrary, $0 < p(A) < \infty$. From Lemma 2 it is clear, that there exist n > 1, $\{A_i\}_{i=1}^n$, $A_i \in D$ such that $A = \bigcup_{i=1}^n A_i$, $A_i \cap A_j = \emptyset$ for $i \neq j=1,2,\ldots,n$. Assume, that $A_1 \neq \emptyset$ and for every E > 0 find a set $B_1 \in \mathcal{A}_0$, $B_1 \subset A_1$ such, that

$$0 < f^{(A_1)} - f^{(B_1)} < \mathcal{E}$$
Then if we put $B=B_1 \cup \bigcup_{i \neq 0} A_i$, the condition (5) is fulfilled.

A₁ is a dyadic element, so there are other dyadic elements \mathbb{A}_{1}^{1} , \mathbb{A}_{1}^{1} such, that $\mathbb{A}_{1}^{1} \cup \mathbb{A}_{1}^{1} = \mathbb{A}_{1}$, $\mathbb{A}_{1}^{1} \cap \mathbb{A}_{1}^{1} = \emptyset$ and $\mathbb{A}_{1}^{1} \neq \emptyset$. Consequently $\mathbb{A}_{1}^{1} = \mathbb{A}_{1}^{1} + \mathbb{A}_{1}^{1} \cap \mathbb{A}_{1}^{1} = \emptyset$ and $\mathbb{A}_{1}^{1} \neq \mathbb{A}_{1}^{1} \neq \emptyset$. Consequently $\mathbb{A}_{1}^{1} = \mathbb{A}_{1}^{1} \cap \mathbb{A}_{1}^{1} = \emptyset$ and $\mathbb{A}_{1}^{1} \cap \mathbb{A}_{1}^{1} = \emptyset$ and $\mathbb{A}_{1}^{1} \cap \mathbb{A}_{1}^{1} = \emptyset$ and $\mathbb{A}_{1}^{1} \cap \mathbb{A}_{1}^{1} \cap \mathbb{A}_{1}^{1} \cap \mathbb{A}_{1}^{1} \cap \mathbb{A}_{1}^{1} = \emptyset$ and $\mathbb{A}_{1}^{1} \cap \mathbb{A}_{1}^{1} \cap \mathbb{A}_{1}^{1} = \emptyset$ and $\mathbb{A}_{1}^{1} \cap \mathbb{A}_{1}^{1} \cap \mathbb{A$

Since μ is finite we can choose $k_0 > 1$ such, that $\frac{1}{2^{k_0}} \mu(A_1) < \mathcal{E}$.

If we put $B_1 = A_1 - A_1$, then $B_1 \in \mathcal{F}_0$ and by (7) there holds that $\mu(A_1) - \mu(B_1) = \mu(A_1) < \mathcal{E}$.

The left inequality in (6) can be proved by the following way: $k_{o} \qquad k_{o} \qquad k_{o}$ It is enough to show that $(A_{1}) > 0$. Let us assume, that $(A_{1}) = 0$.

Thus for every partition $\{C_{i}\}_{i=1}^{n} \subset \mathcal{A}_{1}$ of A_{1}^{k} there holds, that $\sum_{i=1}^{n} \|\mathbf{M}(C_{i})\| = 0$. Then the following sequence of implication holds:

$$\| \mathbf{M}(\mathbf{C_i}) \| = 0$$
 for every i=1,2,...,n =>
 $\mathbf{M}(\mathbf{C_i}) = \{0\}$ for every i=1,2,...,n =>
 $\mathbf{M}(\mathbf{A_1}) = \{0\}$.

This is a contradiction with the construction of the dyadic structure D_0 , so the inequalities in (6) really hold. It means f^{μ} is nonatomic.

In [3] is shown, that the total variation of m_j , i.e. $|m_j|$, is the smallest measure with the property (4), thus holds $|m_j|$ (A) $\in \mathcal{J}_{\mathcal{M}}(A)$ for every $A \in \mathcal{A}_1$ and j=1,2. This and the nonatomicity of $\mathcal{J}_{\mathcal{M}}$ conclude the nonatomicity of $|m_j|$ (j=1,2).

From (4) it is obvious, that m_j are \mathcal{N} -continous (j=1,2), thus by the RNP we can find Bochner integrable functions $f_1, f_2 : X \to Y$ such, that $m_j(A) = \int_A f_j d \mathcal{N}$ for $A \in \mathcal{A}_1$ and j=1,2.

Let T=Y \oplus Y , then T is a Banach space with the RNP. We can easy realise, that the set function m: f_1 \rightarrow T defined by

 $m(A)=(m_1(A),m_2(A))$ for $A \in \mathcal{A}_1$, have the same properties as m_j , i.e. m is a vector measure of nonatomic bounded variation.

We can easy realise, that the Ljapunoff's theorem for vector measures ([8]) is valid under our conditions, too. Thus holds, that the closure of the domain of m, i.e. the set $K=cl(\bigcup_{A\in\mathscr{A}_1} m(A))$ is convex. Since $m_j(\emptyset)=0$ and $m_j(X)=x_j$ (j=1,2), holds that $m(\emptyset)=(0,0), m(X)=(x_1,x_2)\in K$. It implies, that $\mathcal{A}(x_1,x_2)\in K$, thus for every $\mathcal{E}>0$ there exists

 $A \in A_1$ such that

$$\|\mathbf{x}_{1},\mathbf{x}_{2}\| - (\mathbf{m}_{1}(\mathbf{A}),\mathbf{m}_{2}(\mathbf{A}))\|_{\mathbf{T}} < \frac{\varepsilon}{4}, i.e.$$

$$\|\mathbf{x}_{j} - \mathbf{m}_{j}(\mathbf{A})\|_{\mathbf{Y}} < \frac{\varepsilon}{4} \qquad (j=1,2)$$
(8).

From the density of \mathscr{A}_0 in \mathscr{A}_1 in the topology induced by 0 it follows, that there exists a sequence $\{A_{i,i=1}^{\infty}\subset\mathscr{A}_0 \text{ such that } \mathcal{M}(A_i^{\Delta}A)\to 0 \ (i\to\infty)$. Since

 $\|\mathbf{m}_{j}(\mathbf{A}_{i}) - \mathbf{m}_{j}(\mathbf{A})\| \leq \int_{\mathbf{A}_{i} \Delta \mathbf{A}} \|\mathbf{f}_{j}\| d\omega ,$ and $\int_{\mathbf{E}} \|\mathbf{f}_{j}\| d\omega (\mathbf{E} \in \mathcal{A}_{1}) \text{ is absolutly continuous with respect to } \omega ,$ it is clear, that $\lim_{n \to \infty} \|\mathbf{m}_{j}(\mathbf{A}_{i}) - \mathbf{m}_{j}(\mathbf{A})\| = 0 \quad (j=1,2). \text{ It means there } n \to \infty$ exists $\mathbf{A}_{0} \in \mathcal{A}_{0} \text{ such that } \|\mathbf{m}_{j}(\mathbf{A}_{0}) - \mathbf{m}_{j}(\mathbf{A})\| \leq \frac{\varepsilon}{4} \text{ . Using this and}$ (8) we receive

$$\|\lambda \mathbf{x}_{j} - \mathbf{m}_{j}(\mathbf{A}_{0})\| < \frac{\varepsilon}{2} \qquad (j=1,2)$$

We know, that for $A_0 \in \mathcal{A}_0$ holds $m_1(A_0) + m_2(X - A_0) \in M(A_0) + M(X - A_0) =$ =M(X) and from (9) follows, that

 $\| \propto x_1 + (1-d)x_2 - (m_1(A_0) + m_2(X - A_0)) \| \leq \| dx_1 - m_1(A_0) \| + \| dx_2 - m_2(A_0) \| \leq \varepsilon .$ It means that $dx_1 + (1-d)x_2 \in clM(X)$.

The proof of Theorem 1 is completed.

REFERENCES

- [1] CAPEK, P.: On small systems. Acta F.R.N. Univ. Comen. Mathematica, 34,1979,93--101
- [2] COSTE, A.: Sur les multimesures a valeurs fermées bornées d'un espace de Banach. C.R. Acad. Sci. Paris Sér. A, 280, 1975, 567--570
- [3] DINCULEANU, N.: Vector measures. Berlin 1966
- [4] DUNFORD, N. PETTIS, B.J.: Linear operations on summable functions. Trans. Amer. Math. Soc., 47, 1940, 323--392
- HIAI, F.: Radon-Nikodym Theorems for Set-Valued Measures.

 J. Multivariate Anal., 8,1978, 76--118
- [6] NUBRUNN, T. RIEČAN, B.: Miera a integrál. Bratislava 1981
- [7] PHILLIPS, R.S.: On weakly compact subsets of a Banach space.

 Amer. J. Math., 65,1943, 108--136
- [8] UHL,J.J.,Jr.: The range of a vector-valued measure. Proc. Amer. Math. Soc.,23,1969,158--163.

Dr. L. Zsilinszky Engelsova 4 940 61 Nové Zámky Czehoslovakia