An Inverstigation on the Operations of the Extended Interval-valued Functions and Their Measurability

Li Xihe

Department of Mathematics, Sichuan College of Eduction, Chengdu, China

This paper studies some measurability of the extended interval-valued functions and introduce the operations +, -, -, -, of the extended interval-valued functions. Furthermore, we have discussed some measurability of the extended interval-valued functions. On background of the measurability of the extended interval-valued functions, render may be referred (1,2) ect.

Keywords: Measurable space, Extended interval-valued function, Measurability, Oparation property.

1. Some Measurability of the Extended Interval-valued Functions.

Let (Ω, \mathcal{F}) be a measurable space, where Ω is a fixed nonempty set and \mathcal{F} is a field. Let \mathbb{R} be the real line, and $\mathbb{R} = \mathbb{R} \cup \{1\infty\}$ be the extended real line. Let $(\mathbb{R}, \mathcal{F})$ and $(\mathbb{R}, \overline{\mathcal{F}})$ be the Borel measurable space and the extended Borel measurable space, respectively. Let $\Delta \triangleq \{(a,b) : a,b \in \mathbb{R}, a \leq b, (a,b) \neq \emptyset\}$. Where, (a,b) or (a,b), or (a,b), or (a,b) or (a,b). To simplify the writing, set $(a,a) = \{a\} = a \ (a \in \mathbb{R})$. If there exist $\ell > 0$, such that $\mathcal{F} \supset 0$ and $\mathcal{F} \supset 0$ and $\mathcal{F} \supset 0$ and $\mathcal{F} \supset 0$ and $\mathcal{F} \supset 0$.

Definition 1. $\Gamma: \Omega \longrightarrow \Delta$ is called "extended interval-valued function.

1) The Γ is called " \mathcal{J} -measurable", if for $\forall x \in \mathbb{R}$, " Γ $\Rightarrow x$ " = $\{\omega \in \mathcal{L}: \Gamma(\omega) \ni x\}$ $\in \mathcal{J}$.

2) The Γ is called " \mathcal{J} -weakly measurable", if for $\forall x \in \overline{R}$, " $P(3) x" = \{\omega \in \mathcal{R} \mid P(\omega)(3)x\} \in \mathcal{F}$.

Definition 2. Let $P: \mathcal{R} \longrightarrow \Delta$. We write E_P , $E_P(P < x)$, S_P , I_P that:

 $E_{P} = \left\{ \omega \in \mathbb{R} \mid P(\omega) = \alpha \; (\alpha \in \overline{R}) \right\} \; , \; E_{P}(P < x) = \left\{ \omega \in E_{P} \mid P(\omega) < x \right\} \; (x \in \overline{R}) \; ,$

 $I_{\mathcal{P}} = \{ \omega \in \mathcal{N} : \text{ there exists a, b } \in \mathbb{R}, \text{ a < b, such that } \mathcal{P}(\omega)(3)b, \mathcal{P}(\omega)(3)a \}$

- 1) The Γ is called "normal", if $E_{\Gamma} \in \mathcal{F}$, and $E_{\Gamma}(\Gamma < \mathbf{x}) \in \mathcal{F}$ ($\forall \mathbf{x} \in \mathbb{R}$).
- 2) The $\mathcal P$ is called "strongly normal", if the $\mathcal P$ is normal and $\mathcal S_{\mathcal P} \in \mathcal F$, $\mathcal I_{\mathcal P} \in \mathcal F$.

Proposition 1. Let $de\Delta$, and let f, f, f2: $\Omega \longrightarrow R$ are \mathcal{F} -measurable functions and $f_i \leq f_2$. We write $f_i = (i=1,2,3,4,5): \Omega \longrightarrow \Delta$:

 $\Gamma(\omega) \equiv \delta$, $(\omega \in \Omega)$; $\Gamma(\omega) = f(\omega)$, $(\omega \in \Omega)$; $\Gamma(\omega) = (f(\omega), f(\omega))$, $(\omega \in \Omega)$; $\Gamma_{4}(\omega) = \{f(\omega), +\infty\}, (\omega \in \mathcal{N}); \quad \Gamma_{5}(\omega) = (-\infty, f_{2}(\omega))\}, (\omega \in \mathcal{N});$

then, T_i (i = 1, 2, 3, 4, 5) are \mathcal{F} -measurable, \mathcal{F} -weakly measurable, normal, strongly normal extended interval-valued functions.

Proofs are immediate.

Proposition 2. Let $\Gamma: \Omega \longrightarrow \Delta$; then

P is \mathcal{F} -measurable \Longrightarrow " $P \supset \mathcal{F}$ " = $\{w \in \mathcal{N} \mid P(w) \supset \mathcal{F}\} \in \mathcal{F}$, $(\forall \mathcal{F} \in \Delta)$.

Proof. C.f. theorem 1.1 of (3).

Proposition 3. Let $\Gamma: \Omega \longrightarrow \Delta$. Let Q be ratinal number set.

If " $7 ext{ } ext{$

1) \mathcal{T} is \mathcal{T} -weakly measurable \iff 2) * $\mathcal{T}(\mathcal{T}) \times \mathcal{T}(\mathcal{T}) \times \mathcal{T}(\mathcal{T$ $\epsilon \mathcal{F} \quad (\forall \ \mathbf{r}_1, \mathbf{r}_2 \in \mathbf{Q}: \ \mathbf{r}_1 < \mathbf{r}_2) \iff 4) \quad \mathcal{F} \supset (\mathbf{a}, \mathbf{b}) \in \mathcal{F} \quad (\forall \ \mathbf{a}, \mathbf{b} \in \mathbf{R}, \ \mathbf{a} < \mathbf{b}).$

Proof. "1) \Longrightarrow 2)" is immediate.

"2) \Longrightarrow 3)": " $r \supset (r_1, r_2)$ " = $h_1, h_2 \in \mathbb{Q}$ [$r(s)h_1$ " $\cap r(s)h_2$ "] $\in \mathcal{T}$.

"3) \Longrightarrow 4)": For \forall a, b $\in \mathbb{R}$, a < b, there exists $\{r_n\}_{n \ge 1} \subset \mathbb{Q}$, $\{h_n\}_{n \ge 1} \subset \mathbb{Q}$ such that $r_n < h_n$ $(n \ge 1)$, and $r_n \downarrow a$, $h_n \uparrow b$, it follow by $(a,b) = \bigcup_{n \ge 1} (r_n, h_n)$

that " $(r_n, h_n) = \bigcup_{n \ge 1} ||r_n, h_n|| \in \mathcal{F}$.

"4) \Longrightarrow 1)": For \forall x \in R, there exists $\{a_n\}_{n\geq 1} \subset R, \{b_n\}_{n\geq 1} \subset R$, such that $a_n < b_n (n \ge 1), a_n \uparrow x, b_n \downarrow x$, it follows that " $(?)(?) x = \bigcup_{n \ge 1} "? \supset (a_n, b_n) " \in \mathcal{F}$. \square

Proposition 4. Let $\Gamma: \Omega \longrightarrow \Delta$, and $\overline{\mathcal{B}}$ is the collection of extended Borel sets, then

 Γ is normal \iff $E_{\rho}(\Gamma \in B) \in \mathcal{F}$, $(\forall B \in \overline{\mathcal{B}})$.

Proofs are immediate.

Proposition 5. Let $\Gamma: \Omega \longrightarrow \Delta$; then

- 1) Γ is \mathcal{F} -measurable $\Longrightarrow \Gamma$ is \mathcal{F} -weakly measurable;
- 2) T is strongly normal => F is normal.

Proofs are immediate.

Proposition6. Let $f': \Lambda \longrightarrow \Delta$, then

 Γ is \mathcal{J} -weakly measurable and strongly normal \Longrightarrow Γ is \mathcal{J} -measurable.

Consequently, $P \ni x^{H} = P \ni x^{H} \cup P \ni x^{H} \cap P \ni x^{H} \in \mathcal{F}$.

Remark 1. The following example 1 states necessity of the condition "strongly normal" in the proposition 6.

Example 1. Let $\Omega = \mathbb{R}$, $(\mathbb{R}, \mathcal{J})$ be Lebesgue measurable space, $\mathbb{E} \subset (0, 1)$ and $\mathbb{E} \in \mathcal{J}$. Let $\Gamma: \Omega \longrightarrow \Delta$:

$$\Gamma(\omega) = \begin{cases} (-\infty, 0), & \text{if } \omega \in E, \\ (-\infty, 0), & \text{if } \omega \in R^{-}E. \end{cases}$$

Clealy, 1) Γ is \mathcal{F} -weakly measurable and normal, but Γ is not strongly normal 2) Since " $\Gamma \ni \circ$ " = $E \in \mathcal{F}$, and hence Γ is not \mathcal{F} -measurable.

2. The eperrations of extended interval-valued functions and their measurability

Definition 3. Let $\star \in \{+, -, \cdot, \div\}$. The expressions $o \cdot (\pm \infty)$, $(\pm \infty) - (\pm \infty)$, $\frac{\pm \infty}{\pm \infty}$, $\frac{a}{o}$ $(a \in \overline{R})$ are meaningless.

- 1) For σ_1 , $\sigma_2 \in \Delta$, we have diffined $\sigma_1 * \sigma_2 = \{x = x_1 * x_2 : x_1 \in S_1, x_2 \in S_2\}$. Where, we assume that $x_1 * x_2$ exists for $\forall x_1 \in \mathcal{S}_1$ and $x_2 \in \mathcal{S}_2$.
 - 2) For $\Gamma_1, \Gamma_2: \Omega \longrightarrow \Delta$, we defined $\Gamma_1 * \Gamma_2: \Omega \longrightarrow \Delta$:

$$(\Gamma_1 \star \Gamma_2)(\omega) = \Gamma(\omega) \star \Gamma(\omega)$$
, $(\omega \in \Omega)$.

where, we assume that $((\omega) \star ((\omega)))$ exists for $\forall \omega \in \Omega$.

Property 1. Let $\Gamma: \Omega \longrightarrow \Delta$, and a, b $\in \mathbb{R}$, then

- 1) Γ is \mathcal{I} -measurable \Longrightarrow a+ b· Γ is \mathcal{I} -measurable;
- 2) Γ is \mathcal{I} -weakly measurable \Longrightarrow a + b Γ is \mathcal{I} -weakly measurable.

Proof. The assertuous follows from the fact for $\forall x \in \mathbb{R}$ that

"a+b·
$$\Gamma \rightarrow +\infty$$
" =
$$\begin{cases} \phi, & \text{if } b=0, \\ \Gamma(3) + \infty, & \text{if } b>0, \\ \Gamma(3) - \infty, & \text{if } b<0; \end{cases}$$

$$"a+b\cdot P \ni +\infty" = \begin{cases} \phi, & \text{if } b=0, \\ "P(\ni) +\infty", & \text{if } b>0, \end{cases} \quad "a+b\cdot P \ni -\infty" = \begin{cases} \phi, & \text{if } b=0, \\ "P\ni -\infty", & \text{if } b>0, \end{cases}$$

$$"P(\ni) -\infty", & \text{if } b<0. \end{cases}$$

$$"P(\ni) -\infty", & \text{if } b<0. \end{cases}$$

Lemma 1. Let $[: \Omega \longrightarrow \Delta : then$

- 1) Γ_1 , Γ_2 are normal \Longrightarrow $\Gamma_1 + \Gamma_2$ is normal;
- 2) Γ_1 , Γ_2 are strongly normal \Longrightarrow $\Gamma_1 + \Gamma_2$ is strongly normal.

Proof, 1) The assertions follows from the fact that $E_{l'_1+l'_2}=E_{l'_1}\cap E_{l'_2}$;

$$\begin{split} E_{\vec{l}+\vec{l}_{2}}(\vec{l},+\vec{l}_{2}$$

2) The assertions follows from 1) and fact that

Property 2. Let $\Gamma_1, \Gamma_2: \mathcal{A} \longrightarrow \Delta$. Then

- 1) Γ_1, Γ_2 are \mathcal{J} -weakly measurable and normal $\Longrightarrow \Gamma_1 + \Gamma_2$ is \mathcal{J} -weakly measurable and normal;
- 2) Γ_1 , Γ_2 are \mathcal{F} -weakly measurable and strongly normal \Longrightarrow $\Gamma_1 + \Gamma_2$ is \mathcal{F} measurable and strongly normal.

1) The assertions follows from lemma 1, proposition 4 and fact that

$$\tilde{T}_{1}^{2} + \tilde{T}_{2}^{2} (3) x'' = \bigcup_{n \geq 1} \bigcup_{\substack{Y_{1}, Y_{2} \in \mathbb{Q} \\ 0 < Y_{2} - Y_{1} < \frac{1}{n}}} \left\{ \left[\tilde{T}_{1}^{2} > (Y_{1}, Y_{2})^{n} \cap \tilde{T}_{2}^{2} > (x_{1} - Y_{1} - \frac{1}{n}, x_{1} - Y_{2} + \frac{1}{n})^{n} \right] U \left[\tilde{T}_{2}^{2} > (Y_{1}, Y_{2})^{n} \cap \tilde{T}_{1}^{2} > (x_{1} - Y_{1} - \frac{1}{n}, x_{2} - Y_{1} - \frac{1}{n})^{n} \right] U \left[\tilde{T}_{2}^{2} > (Y_{1}, Y_{2})^{n} \cap \tilde{T}_{1}^{2} > (x_{1} - Y_{1} - \frac{1}{n}, x_{2} - Y_{1} - \frac{1}{n})^{n} \right] U \left[\tilde{T}_{2}^{2} > (Y_{1}, Y_{2})^{n} \cap \tilde{T}_{1}^{2} > (x_{1} - Y_{1} - \frac{1}{n}, x_{2} - Y_{1} - \frac{1}{n})^{n} \right] U \left[\tilde{T}_{2}^{2} > (Y_{1}, Y_{2})^{n} \cap \tilde{T}_{1}^{2} > (x_{1} - Y_{1} - \frac{1}{n})^{n} \right] U \left[\tilde{T}_{2}^{2} > (Y_{1}, Y_{2})^{n} \cap \tilde{T}_{1}^{2} > (x_{1} - Y_{1} - \frac{1}{n})^{n} \right] U \left[\tilde{T}_{2}^{2} > (Y_{1}, Y_{2})^{n} \cap \tilde{T}_{1}^{2} > (x_{1} - Y_{1} - \frac{1}{n})^{n} \right] U \left[\tilde{T}_{2}^{2} > (Y_{1}, Y_{2})^{n} \cap \tilde{T}_{1}^{2} > (x_{1} - Y_{1} - \frac{1}{n})^{n} \right] U \left[\tilde{T}_{2}^{2} > (Y_{1}, Y_{2})^{n} \cap \tilde{T}_{1}^{2} > (x_{1} - Y_{1} - \frac{1}{n})^{n} \right] U \left[\tilde{T}_{2}^{2} > (Y_{1}, Y_{2})^{n} \cap \tilde{T}_{1}^{2} > (x_{1} - Y_{1} - \frac{1}{n})^{n} \right] U \left[\tilde{T}_{2}^{2} > (Y_{1}, Y_{2})^{n} \cap \tilde{T}_{1}^{2} > (x_{1} - Y_{1} - \frac{1}{n})^{n} \right] U \left[\tilde{T}_{2}^{2} > (Y_{1}, Y_{2})^{n} \cap \tilde{T}_{1}^{2} > (x_{1} - Y_{1} - \frac{1}{n})^{n} \right] U \left[\tilde{T}_{2}^{2} > (Y_{1}, Y_{2})^{n} \cap \tilde{T}_{2}^{2} > (x_{1} - Y_{1} - \frac{1}{n})^{n} \right] U \left[\tilde{T}_{2}^{2} > (Y_{1}, Y_{2})^{n} \cap \tilde{T}_{2}^{2} > (x_{1} - Y_{1} - \frac{1}{n})^{n} \right] U \left[\tilde{T}_{2}^{2} > (Y_{1}, Y_{2})^{n} \cap \tilde{T}_{2}^{2} > (x_{1} - Y_{1} - \frac{1}{n})^{n} \right] U \left[\tilde{T}_{2}^{2} > (Y_{1}, Y_{2})^{n} \cap \tilde{T}_{2}^{2} > (Y_{1} - Y_{1} - \frac{1}{n})^{n} \right] U \left[\tilde{T}_{2}^{2} > (Y_{1}, Y_{2})^{n} \cap \tilde{T}_{2}^{2} > (Y_{1} - Y_{1} - \frac{1}{n})^{n} \right] U \left[\tilde{T}_{2}^{2} > (Y_{1} - Y_{1} - \frac{1}{n})^{n} \right] U \left[\tilde{T}_{2}^{2} > (Y_{1} - Y_{1} - \frac{1}{n})^{n} \right] U \left[\tilde{T}_{2}^{2} > (Y_{1} - Y_{1} - \frac{1}{n})^{n} \right] U \left[\tilde{T}_{2}^{2} > (Y_{1} - Y_{1} - \frac{1}{n})^{n} \right] U \left[\tilde{T}_{2}^{2} > (Y_{1} - Y_{1} - \frac{1}{n})^{n} \right] U \left[\tilde{T}_{2}^{2} > (Y_{1} - Y_{1} - \frac{1}{n})^{n} \right] U \left[\tilde$$

x-Yz+h)"]U["アコ(バーカ,Yz+力)"ハ Ep(x-Y- イメロ<x-Yz+力)]U(アコ(バーカ, Yz+力)"ハ Ep(x-Y-力)") (YXER);

2) The assertions follows from 1), lemma 1 and proposition 6.

be strongly normal and -weakly measurable. We write

$$S_{+\infty} = \bigcup \left(\bigcap_{k \ge n} [P(\Theta) k'] \bigcup E_{p}(P = +\infty) \right), \quad I_{-\infty} = \bigcup \left(\bigcap_{k \ge n} [P(\Theta) - k'] \bigcup E_{p}(P = -\infty) \right),$$

$$\mathcal{L}_{S} = \mathcal{N} - \left(S_{P} U E_{P} U S_{+\infty} \right), \quad \mathcal{L}_{I} = \mathcal{N} - \left(I_{P} U E_{P} U I_{-\infty} \right).$$

 Γ_{S_o} , Γ_{I_o} , $\Gamma_{(S_o)}$, $\Gamma_{(I_o)}$: $\Omega \longrightarrow R$ defined by that

$$\Gamma_{S_{o}(\omega)} = \begin{cases}
 \max\{x\}, & \text{if } \omega \in S_{P}, \\
 P(\omega) \ni x
\end{cases}$$

$$\Gamma_{I_{o}(\omega)} = \begin{cases}
 \min\{x\}, & \text{if } \omega \in I_{P}, \\
 P(\omega) \ni x
\end{cases}$$

$$\Gamma_{I_{o}(\omega)} = \begin{cases}
 \min\{x\}, & \text{if } \omega \in I_{P}, \\
 Q_{o}, & \text{if } \omega \in I_{P},
\end{cases}$$

$$T_{I_0}(\omega) = \begin{cases} \min\{x\}, & \text{if } \omega \in I_P, \\ P(\omega) \ni x & \text{if } \omega \in I_P; \end{cases}$$

$$\mathcal{T}_{(S_{\omega})} = \begin{cases}
Sup_{\{X\}}, & \text{if } \omega \in \Omega_{S}, \\
P(\omega) \ni X
\end{cases}, & \text{if } \omega \in \Omega_{I}, \\
0, & \text{if } \omega \in \Omega_{I},
\end{cases}$$

$$\mathcal{T}_{(S_{\omega})} = \begin{cases}
Sup_{\{X\}}, & \text{if } \omega \in \Omega_{I}, \\
P(\omega) \ni X
\end{cases}, & \text{if } \omega \in \Omega_{I}, \\
0, & \text{if } \omega \in \Omega_{I}.$$

$$\Gamma_{(I_0)}(\omega) = \begin{cases} \inf\{x\}, & \text{if } \omega \in \Omega_I, \\ P(\omega) \ni x \end{cases}$$

$$0, & \text{if } \omega \in \Omega_I.$$

Then $\lceil S_0 \mid \Gamma_{I_0} \mid \Gamma_{(S_0)} \mid \Gamma_{(I_0)} : \Omega \longrightarrow \overline{\mathbb{R}}$ are \mathcal{F} —B measurable functions.

Proof. Fory c &R, we have

It follows, by the conditions, that

Thus, Γ_{S_o} and $\Gamma_{(I_o)}$ are $\mathcal{J}-\mathcal{B}$ measurable functions.

 \mathcal{F} - \mathcal{B} measurability of Γ_{I_0} and $\Gamma_{(S_0)}$ are similarly proved.

Lemma 3. Let $\Gamma: \mathcal{L} \longrightarrow \Delta$. For $\mathcal{L} \in \Delta$, we write $\mathcal{L} = \{y = x^2 : x \in \mathcal{L}\}$ and let $\Gamma^{(2)}: \mathcal{L} \longrightarrow \Delta: \Gamma^{(2)}(\omega) = (\Gamma(\omega))(\omega \in \mathcal{L})$. We have

- 1) Γ is normal and \mathcal{F} -weakly measurable $\Longrightarrow \Gamma^{(2)}$ is normal and \mathcal{F} -weakly measurable:
- 2) Γ is strongly normal and \mathcal{F} -weakly measurable $\Longrightarrow \Gamma^{(2)}$ is strongly normal. Proof. 1) The normality of $\Gamma^{(2)}$ follows from the fact that $\mathcal{F}_{\Gamma^{(2)}} \equiv \mathcal{F}_{\Gamma}$, and for $\forall x \in \mathbb{R}$

$$E_{\mathcal{P}^{(2)}}(\mathcal{P}^{(2)} < x) = \begin{cases} E_{\mathcal{P}}(\mathcal{P} < \sqrt{x}) \cup E_{\mathcal{P}}(\mathcal{P} > -\sqrt{x}), & \text{if } x > 0, \\ \phi, & \text{if } x \leq 0. \end{cases}$$

The \mathcal{J} -weakly measurability of $\mathcal{J}^{(2)}$ follows from the fact for $\forall x \in \mathbb{R}$ that $\mathcal{J}^{(2)}(x) = \begin{cases} \mathcal{J}^{(2)}(x) \mathcal$

2) It follows readily that

$$\begin{split} S_{\mathcal{P}^{(2)}} &= \left\{ \text{``} | T_{S_o}| > | T_{I_o}| \text{``} U \text{``} | T_{I_o}| > | T_{S_o}| \text{``} U \text{``} | T_{S_o}| > | T_{G_o}| \text{``} U \text{``} | T_{I_o}| > | T_{C_{S_o}}| \text{``} \right\} - I_{-\infty} ; \\ I_{\mathcal{P}^{(2)}} &= \left\{ \text{``} | T_{S_o}| < | T_{I_o}| \text{``} U \text{``} | T_{I_o}| < | T_{S_o}| < | T_{C_{S_o}}| \text{``} U \text{``} | T_{I_o}| < | T_{C_{S_o}}| < |$$

Thus, by the conditions and lemma 2, $S_{\Gamma^{(2)}}$, $I_{\Gamma^{(2)}} \in \mathcal{J}$. Therefore, by 1), $\Gamma^{(2)}$ is strongly normal.

Property 3. Let $\Gamma_1, \Gamma_2 : \Omega \longrightarrow \Delta$; then

- 1) Γ_1 and Γ_2 are normal and \mathcal{J} -weakly normal \Longrightarrow $\Gamma_1 \cdot \Gamma_2$ is normal and \mathcal{J} -weakly measurable;
- 2) Γ_1 and Γ_2 are strongly normal and \mathcal{F} -weakly measurable $\Longrightarrow \Gamma_1 \cdot \Gamma_2$ is strongly normal and \mathcal{F} -measurable.

Proof. It follows readily that $\Gamma_1 \cdot \Gamma_2 = \frac{1}{2} \left((\Gamma_1 + \Gamma_2)^{(2)} - (\Gamma_1^{(2)} + \Gamma_2^{(2)}) \right)$.

The assertion 1) follows at once from lemma 3 and property 2.

The assertion 2) follows at once from lemma 3 and property 6.

Lemma 4. Let $\Gamma: \Omega \longrightarrow \Delta$, and let $\Gamma^{-1} = \frac{1}{\Gamma} = 1 - \Gamma: \Omega \longrightarrow \Delta$. We have

- 1) \mathbb{P} is normal $\Longrightarrow \mathbb{P}^{-1}$ is normal;
- 2) r is \mathcal{F} -weakly measurable $\Rightarrow r^{-1}$ is \mathcal{F} -weakly measurable;
- 3) T is strongly normal $\longrightarrow T^{-1}$ is strongly normal.

Proof. 1) It follows readily that $E_{\mathcal{T}} = E_{\mathcal{T}}$, and for $\forall c \in \mathbb{R}$,

$$E_{P^{-1}}(P^{-1}< c) = \begin{cases} E_{P}(P<0)UE_{P}(P>\frac{1}{c}), & \text{if } c>0, \\ E_{P}(P<0), & \text{if } c=0, \\ E_{P}(P<0)UE_{P}(P>\frac{1}{c}), & \text{if } c<0. \end{cases}$$

Thus, by the conditions, [7-1 is normal.

2) The assertion follows from condition and fact for $\forall x \in \overline{R}$ that

"
$$P^{-1}(3)x'' = \begin{cases} P(3) \frac{1}{x}, & \text{if } x \in R^{-1}(3), \\ \phi, & \text{if } x = 0. \end{cases}$$

3) The assertion follows from 1) and fact that $S_{p-1} = I_p$, $I_{p-1} = S_p$. \square

Property 4. Let $\Gamma_1, \Gamma_2 : \mathcal{A} \longrightarrow \Delta$, then

- 1) T_1 , T_2 are normal and \mathcal{F} -weakly measurable $\Longrightarrow T_1 \div T_2$ is normal and \mathcal{F} -weakly measurable;
- 2) Γ_1 , Γ_2 are strongly normal and \mathcal{J} -weakly measurable $\Longrightarrow \Gamma_1 \div \Gamma_2$ is strongly normal and \mathcal{J} -measurable.

Poof. The assertions follows at once from lemma 4 and property 4.

Remark 2. The follows example 2 state that necessity of the condition " Γ_1 , Γ_2 are normal" for \mathcal{J} -weakly measurability of $\mathcal{T}_1 * \mathcal{T}_2$ in the results of properties 2,3,4.

Example 2. Let
$$\Gamma_1, \Gamma_2 : \Omega \longrightarrow \Delta$$
:
$$\Gamma_1(\omega) = \{1,3\}, (\omega \in \Omega); \qquad \Gamma_2(\omega) = \{\omega + 3, & \text{if } \omega \in E, \\ \omega, & \text{if } \omega \in (0,1) - E, \\ \{-5, -4\}, & \text{if } \omega \in R - (0,1); \}$$

Where, $\mathcal{L} = \mathbb{R}$, $\mathbb{E} \subset (0,1)$, $\mathbb{E} \in \mathcal{J}$ (c.f. example 1).

Clealy, 1) Γ_l is strongly normal and \mathcal{J} -measurable; \mathcal{I}_2 is \mathcal{J} -measurable, but is not normal; 2) since " $\Gamma_1 + \Gamma_2$ (3) 5.5 " = " $\Gamma_1 \cdot \Gamma_2$ (3) 6 " = $E \in \mathcal{F}$; thus, $\Gamma_1 \times \Gamma_2$ not \mathcal{F} —weakly measurable.

There, $\bigstar \in \{+, -, -\}$. is not \mathcal{J} -weakly measurable. Where, #6 { +, -, , - } .

The follows example 3 state necessity of the conditions " \mathcal{T}_1 , \mathcal{T}_2 are strongly normal" for \mathcal{J} -measurability of $\mathcal{I}_1 * \mathcal{I}_2$ in the results of properties 2, 3, 4.

$$\Gamma_{1}(\omega) = \begin{cases}
(-\infty, \omega), & \text{if } \omega \in E, \\
(-\infty, \omega), & \text{if } \omega \in (0, 1) - E, \\
(4, 5), & \text{if } \omega \in R - (0, 1);
\end{cases}$$

$$\Gamma_{2}(\omega) = \begin{cases}
(-\infty, 1 - \omega), & \text{if } \omega \in E, \\
(-\infty, 1 - \omega), & \text{if } \omega \in (0, 1) - E, \\
(4, 5), & \text{if } \omega \in R - (0, 1);
\end{cases}$$

$$\overline{I_3}(\omega) = \begin{cases}
(\omega, +\infty), & \text{if } \omega \in E, \\
(\omega, +\infty), & \text{if } \omega \in (0, 1) - E, \\
(-2, -1], & \text{if } \omega \in R - (0, 1);
\end{cases}
\overline{I_4}(\omega) = \begin{cases}
(\frac{3}{\omega}, +\infty), & \text{if } \omega \in (0, 1) - E, \\
(\frac{3}{\omega}, +\infty), & \text{if } \omega \in (0, 1) - E, \\
(-1, -1], & \text{if } \omega \in R - (0, 1);
\end{cases}$$

$$(P_1 + P_2)(\omega) = \begin{cases} (-\infty, 1], & \text{if } \omega \in E, \\ (-\infty, 1), & \text{if } \omega \in (0, 1) - E, \\ (8, 10), & \text{if } \omega \in R - (0, 1); \end{cases}$$

$$(P_3 \cdot P_4)(\omega) = (P_3 \div P_5)(\omega) = \begin{cases} (3, +\infty), & \text{if } \omega \in E, \\ (3, +\infty), & \text{if } \omega \in (0, 1) - E, \\ (1, 2), & \text{if } \omega \in R - (0, 1). \end{cases}$$

Clealy, 1) Γ_i (i=1,...,5) are normal and \mathcal{J} —measurable, but Γ_2 , Γ_3 , Γ_5 are not strongly normal; 2) since " $\Gamma_1 + \Gamma_2 \ni 1$ " = " $\Gamma_3 \cdot \Gamma_4 \ni 3$ " = " $\Gamma_3 \div \Gamma_5 \ni 3$ " = $\mathbb{E} \in \mathcal{F}$, hence $\Gamma_1 + \Gamma_2$, $\Gamma_3 \cdot \Gamma_4$, $\Gamma_3 \div \Gamma_5$ are not \mathcal{J} —measurable.

References

- [1] Li Xihe, Stability of random membership frequency and fuzzy statistics, Fuzzy Sets and Systems 29 (1989) 89-102.
- [2] Wang Pei-Zhuang, From the fuzzy statistics to the falling random subset, Advances on Fuzzy Set Theory and Application, P.P. Wang(ed) Pergamon Press (1983).
- [3] M.Loeve, Probability theory, 4th edition (Van Nostrand, New York, 1963).
- (4) P.R. Halmos, Measure theory, Van Nostrand, 1950.