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This paper studies some measurability of the emtended interval-valued
functions and introduce the operations +, -, «, & of the extended interval
-valued functions, Purthermore, We have discussed some measurability of thc
extended interval-valued functions. Om backgroumd of th§ nn.«mabilﬁx of

the emtended iaterval-valued fumotions, pemder may be referred (1,2] ect.
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1. 3Some Measurability of the Extended Interval-valued Functions,

Let (12, ) be a measurable space, where 2 is a fixed nonempty set and 7
is @ 6 field. Let R be the real line, and R = RU{f®} be the extended real
line, Let (R,f3) and (R, 73) be the Borel measurable space and the extended
Borel measurable space, respectively. Let As {(a,b> : a,bé€ E, asb, (a,b>
% ¢}. Where, (a,b) or (a,b}, or (a,b), or (a,b)or (a,b]. To simplity the
writing, set (a,a) = {a} = a (ae¢ R). If there exist £ >°, such that J'>(x~¢ ,
x+¢ ), for S€A and x¢ R, we write "d @ x", It will be assumed that " S (H+x0"

@ "J3*x n; nJ(a)__oo"@ "J?—N".

Definition 1. T : 2 —»A is called "extended interval-valued function,

1) The " is called " ¥ -measurable", if for VY xe'i, "r73 x" m{weSl: [(w)2?x
» T

€ 7.



2) The [ is called " J ~weakly mtmrablo",x
if for V xz¢ R, "Fer X' = {wen| Tw) ()} €7,
Definition 2, Let I’:-Q—#A. We write Ep, Er,(]"< x), 5,7 » Ip thats

Ep = {wem| Pawy= & (@eR)} , EpP<x)= {weEp | Prav<x} (x€R)

5[, = {we 2 s there exists a,bé R, a< b, such that (wwom, Pwsb, W)ca)b}

Il" ={weJ2 : there exists a,b¢ R, a< b, such that [w®)b P&, Py @ aj,

1) The [ is called "normal", if Ep¢¥, and Efp< x)¢9g (Yx€¢R),

2) TheT” is called "strongly normal®™, if the [ is normal and %,67 ,Ipéf .

Proposition 1, Let 0/¢4 , and let f, f;, f2 :-2 —> R ere 7-measurable
funotions and f; & f;, We write [} (r=/234¢):Sl—>4:

[w =, We ); [we= tw , (welt); [w =[fiu,Hhe] wel);
Geoy= [feont09), e ;  [p0)=Cv0,Hum)] wwest) ;
then, T; (i =1, 2, 3, 4, 5) are ?-neasurable, f—weakly ueamablo, norma.l,
strongly normal extended intervel-valmed funcfions.

Proofs are immediate,

Proposition 2, Let |7 :J2 —> ; then
]7 is 7-muursble 4—_—_—> ""VDJ" '{wéJZIZ’Gw)QCf} 67, (VféA).

Proof. C.f. theorem 1.1 of (3].

Proposition 3, Let [ : J2—>A. Let Q be ratinal number set,:
It V"[‘m "67 T’a.—oo 67 » then

1) T is 5/ ~-weakly measmrable & 2) *TOx"eF (¥ x€Q < I) "p;(y,,r,)
67 (Vr,neQr<r) & 4) "Fo(a.b)"ey (v a,b€R, a<b),
Proof. "1) = 2)" is immediate.

"2) = 3)" "7> (r,r;)" = ht}l\-’}; {T(”h (\“VC”"z")e 37

Vg Yz
"3) =—> 4)": ForV a,be R, a< thero exists {rn},,,, c Q, {hn}n,, cQ

such that r, <h, (nz1), and r, | a, hn'fb,it follow by (a,b) = nLJl (r, ,hy)



that " 2(a,b)" = L) n 72 (ru,bn)" €7
"4) = 1)": PFor ¥ x ¢R, there exists {nn}n;,c R, {bﬂ}n;,c R, such that
a,<b.,(n>1), a,1 % b,y x it follows that " [7(» x" ."L?Jl "o (o.,,,bn)"ey. O

Proposition 4, Let [ :2—>A, and z;’- is the collection of extended Borel

sets, then

I is normal <> EATeB)¢F, (VBef).

Proofs are immediate.

Proposition 5., Let [” :2—>A; then
1) T is ?-noamrablo = [ is 7-voa.k1y measurable;
2) TV is strongly normal—> § is normal.

Proofs are immediate.

Proposition6., Let [” : /= —>A, them,

T is ?-\nakly measurable and strongly normal => [ ie ‘77-measurable.

Proof, Por Y x€R, by the conditions, we have that ‘rax'n'rax’ =
Ep(P=+) u{[%ga(ygaure)f')]n[nqa ra?)r,jns,,) «i[ ( ﬂ ]’(—J)’r)]ﬂ[ n T @ Jﬂ.rr} ¢ y'
V<X YeY<X Nrx 7}_>x n>Y2x

Consequently, "3 x" = "P @) x" ("2 "N "7 & x"¢ F

Remark 1. The following example {1 states necessity of the condition "strongly

normal" in the proposition 6,

Example 1, Let 2= R, (R,7) be Lebesgue measurable space, EC (0,1) and E?"j‘.

Let [ :1—>A:;

r ('O0,0J; ‘!:f ‘()éE)
(W) = .
(-00,0), 'Irj wé€R-E.

Clealy, 1) T" is %’-\nukly measurable and normal, but ]" is not strongly normal

2) Since "T"20" = E ?7 » and hence |7 is not 7—measurnblo.



!

2. The operrations of extended interval-valued functions and their measurability

Definition 3. Let *€{+, -, °, +} . The expressions o-(1®) &‘m)—(ioa),.t-ig- ,-g‘— (a€R)
are meaningless,

1) Por ¢/, ;¢/ , we have difined J¥d: = {x-x,*xz : xed) xzecj‘z} . Where,
wve assume that xx X, exists forV x ¢ and x,¢d;.

2) For T} ,B :5—>A, we defined [(%[; :—>4:

(T%G)w) = [w*Fw) , (wef), |

Where, we assume that [[w)* (W) exists for ywe 2.

Property 1. Let{ :21—>A, and a,b€ R, then
1) 7 is 7—neaeurable => a+ bT is 7-meusnrab1e;

2) T is 7-wn.kly measurable —> a + b’ is 7—venkly measurable,

Proof. The assertuons follows from the fact for V x€R that

KPR v b=o, a=%, o=
“o.{—b'r’-) x'= ) ' § b=o, AKX, " ¥ é', if =S
= ¢ 13 b=e, ath T Wx' = v
o X-A zf bko }-
“Vaﬁ;'&" i4 bko ; V(—))T,
and
¢, 5 b=o, 4, % b=o,
“a-Ho-I" 3400 = “a+b-1’a-0°"= “

F o
"I e, iF bre 7a-00, if b

[} [} ‘ [} [y <o . “"_'.
“Poy-w", 1F p<e; 'p a0’ 15 b U

Lemma 1, Let [ :2—>A; then

1) T7»[2 are normal —= T;+[; is normal;

2)T, ,7, are strongly normal = T/+T2 is strongly normal,

Proof, b The assertions follows from fho fact that Eﬁﬂ; ’-‘-'Er, OE/’Z 5
e (Tt0 <20 = By (Fen-r) =, ) oy p (Ter<x-g) =\ [5G0 E NE (B <x-)OE, ] (VX ER),
Er,‘.m(f,’f'}z’ <fM):EI‘7(7',’<1"N)ﬂ Z-.‘,,z (Fo< +89), Eﬁ’-ﬂi ([t <-80) = 45 .

2) The assertions follows from 1) and fact that



Property 2, Let I}, : 92 — 4, Then

1) T,z are 7-—nnkly measurable and normal —> Ti+[: is 7-\1011(11
measurable and nermal;

2) T\» > are "77-\10;1:11 measursble and strongly normal —> Ti+2 is 7-

measurable and strongly normal,

Proof., 1) The assertions follows from lemma 1, proposition 4 and fact that

» ’ v v W ” N] v o L
R = Y Y\r)ea {[ Paaiu)n otk vt £ U [ Boanm N e
'z

O(YL'YI‘-)‘!: '
L)' Eo (-7~ ;’1"]
xVHE JU[ o - vt 14" N Ep (x4 A gt U(Ro0#, s N E e Tim ¥
(vxeR);
ul’,-f];g{m": "ﬂa‘f’m ”U u]”z 3-{-00” , l‘]t,{_[; 3’W"= uﬁa'wnu "ﬁ9'm".

2) The assertions follows from 1), lemma {1 and proposition 6,

Lemma 2, Let H — be strongly normal and -weakly measurable, We write
,,,,,[ cam] U E, CF—m) I, n;:cx {(»—K‘jv E,;( r=-p0),

'Qszjz‘[sz"’f?“im), Ry =R -[TUEpULy),

-
rso ) IIo, KS,), ero) : JL—>R defined by that

max {x} , Jf wes, L f ewe
T’sao)zfl’(w)ax ’ (i 7;““)’{ Ww)ax{ 3, o i r,
o, fw € Sy, ’ o, if welp;

_f Supix}, Hwen ' in $ weS2
st "{Fao)ax f S/ g5« { F(w)axm f 1,
o , 1“f60é-ﬂ5; o, 'ff‘déﬂl_

Then [5, ,T7,,0(s,) »[z,) t 2—> R are %13 measurable funotions.



Proof, Fory c ¢R, we¢ have

Ty, sc"= (- Sp) U {Spa( u“rcam”)n(&;‘r@n")), (tf c 20,

Y‘eQ Yz7¢
f5,8¢ = Srn(};\eja P )A(YQQI’G)C‘)J (vfe<0);
v, >¢
Y v \ i " " .
a2 = (A= RV {0 U pom) N (T n), uf eso;
Ty = N (Ygal’ or )N ( TR af eve)
! 2 ’
i<t

It follows, by the conditions, that

“I?S°§C”C—7) \lr,c:ro)zcueq (VCGR).

Thus, T5, and T(r, are 7—-j‘5 measurable functions,

7-33 measurability of [z, and T(s ) are similarly proved.

e
Lemma 3., Let[ : 2 —>A, Por el » We write J )s {y - xzz xécf} and let
Q@)
T AeA: [Py = (Tw) ) (®€2), Ve have
1) T is normal and 7-veakly measurable =}’[’a) is normal and 7-100.1(11

measurable ;

2) T is strongly normal and ? -weakly measurable —> T"z’ is strongly normal,

Proof. 1) The normality of 77(2) follows from the fact that El’a’;-ET’ , and
for Yx€¢R

@ EV(F<5)UEF(F>’J7)J o x>0,
E]?c:)(r <x)=
¢, if x<o0 ,
The 7-nak1y measurability of T follows from the fact for Y x€R that
“f’cz) i \\F(’)J‘;”U”F(”'&”) if x>0,
X =
¢ ) ij X €0,
2) It follows readily that

Voo

Sper ={ 1T >| 1, | U IRl 1Tl U1 o 2 BV (Tl sl "} = Toow

1\

Trey ={ 1B J<lF | U 1Tal<( U | Tyufic  Tegpl U 1B [<ITel") = Sy

gor—



Thus, by the conditions and lemma 2, SI"”' I,,a)éy. Therefore, by 1), f’a’ is

strongly normal,

Property 3, Let I ,]2 :52 —> 4 ; then

1) Tiand T2 are normal and 7-weakly normal —3 T;*T2 is normal and 7—-
weakly measurable;

2) ﬂ and |2 are strongly normal and 7-veak1y measurable — T[}-T> is

strongly normal and 7-moasurable.

Proof. It follows readily that Tj-7; = 3 ((Tj+ Bl ( B9+ ).
The assertion 1) follows at once from lemma 3 and property 2,

The assertion 2) fo}lows at once from lemma 3 and property 6.

Lemma 4, Let [ :S1—>A, and let ]"-'- -_’1; =1 <[ :l—4 ., Ve have
1) T is normal => T~ is normal;
2) TV is 7-voakly loasur.able — 2 ‘[’" is 7-\10-1(17 megasurable;

3) T is strongly normal —> ‘["" is strongly normal.

Proof. 1) It follows readily that Er"-Er , and for Vcé€R,
Ep(P<o) UEp (F72), if c7o,
Er—t (r<e) = Ep(P<0), if c¢=o,
E,,(F«:)UEF(F7E"), if c<o,
Thus, by the conditions, [’ is normal. v
2) The assertion follows from condition and fa..ot. for Vxe¢R that
‘reyx, <if x€ R-{°}
¢, i x=o.
3) The assertion follows from 1) and fact that ST'" =IV: I,,.,=5,q, 0

[\

T"ca)x'/={

Property 4. Let [[,[z +2 —> 4, then

1) T,» T» are normal and 7-wak1y measurable —> [+ 2 is normel and
7 =-weakly measurable;

2) T/, > are dtrongly normal and 7—mnk1y measursble == [/ T[] is
strongly normal and '7 -measurable,



Poof, The assertions follows at once from lemma 4 and property 4,

Remark 2, The follows example 2 state that necessity of the condition "n » [

are normal" for ?-—\nakly measurability of T;*[Z in the results of properties
2.3'40

Example 2. Let 17,z g2 —A ;

w+3, 1fwéeF,

W, gfewe€(ol)-F,
541 fwe R=(o,1);

-
ﬁcw)_—’—-:[l,aj,(w eﬂ’)j E(“))= 73‘-’13 ‘

where, .2 = R, EC (0,1), Eé-? (cef. example 1),

Clealy, 1) T? is strongly normal and 7-loasurablo: B is ?-neaaurablo, but
is not normal; 2) since "[T+7 (D 55

"= "F.mwé6 S=EET thus, 7} ¥ &5
is not 7 ~weakly measurable, -""‘ﬁ-—c—ﬁ) s’ |
gy ot
Where, %6 { +, -, , -} . ="+

The follows example 3 state necessity of the conditions "7, 2 are strongly
normal" for 7-ncasurability of [7%X12 in the results of properties 2, 3, 4,

Example 3, Let [7 (i = 1,°°°,5):52 — 4

-00,w), <4 weE, (-00, 1-w], 4 weF,
[19)={ po,c0), i} @€@V-E, 2=y (00, (-w), if we(41)-E,
1[4,5-), 14 we R-Go, 1), 4,5), ifweR-GY;
(w,+%), ¢f w¢E, [-5-,1-90)1 if weE,

ECw)z (w, +50), 1(\{ we(o,)-E, T;_(w).-.

(2,400, if we@VE
¢2,-1], FweR-C1);

-1.-13 5 if w € R=(o,\) ;
-
Te=04 .

It follows readily that TtF, F-%, B+Tr: 2 —>48:

(00,11, 44 wEE, (3+w), 1§ weE,
(ﬁ‘f’ﬁ)(ﬂ?} = C‘w) 1), 1:5' Wécojt)-E) (K.K) ao)z(r%% K-)Cw): (31 (—00)) i"'Wé(O,‘)“E)

(8, 10)s 13 @€ R=(2,1); (1,2), ifweR-e,L),



Clealy, 1) [; (i=1,+*,5) are normal and 7 -measurable, but [, 3o T5 are

not strongly normal; 2) since "[+[2 21" = "[J-742 3" = "GFsIy23" = EF}’,

hence Ti+T:, T3:T4, I;+Ts are not 7 -measurable.
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