A -pseudometrics as families of ordinary pseudometrics

Wolfgang Flüshöh Fachbereich Mathematik

Bergische Universität-Gesamthochschule Wuppertal Gaußstraße 20,5600 Wuppertal 1,Federal Republic of Germany

The aim of this paper is to show that probabilistic pseudometrics under \wedge (\wedge -pseudometrics) and]0,1[-indexed families ($^{\rm m}_{\alpha}$)_{\alpha\in]0,1[} of ordinary pseudometrics $^{\rm m}_{\alpha}$ provided with the property

$$m_{\alpha} = \inf_{\beta \in [0, \alpha[} m_{\beta} \text{ for every } \alpha \in]0,1[$$

are equivalent notions.

Let us first recall some definitions:

 \mathfrak{S}^+ denotes the set of all nonnegative probability distribution functions – i.e. all increasing, left continuous functions $F: \mathbb{R} \to [0,1]$ with F(0)=0 and sup F(x)=1.

♣ is partially ordered by

 $F,G\in \mathcal{F}^+$: $F\subseteq G$ \iff $F(x)\supseteq G(x)$ for every $x\in R$

and with the binary operation τ_{λ} defined by

$$F,G \in \mathcal{F}^+; x \in \mathbb{R}: \quad \tau_{\wedge}(F,G)(x) := \sup_{\substack{y,z \in \mathbb{R} \\ y+z=x}} F(y) \wedge G(z)$$

 $(\boldsymbol{s}^+, \tau_{\wedge})$ is a semigroup with unit element ϵ_0 given by

$$\mathbf{x} \in \mathbf{R}: \quad \in_{\widehat{\mathbf{0}}} (\mathbf{x}) := \begin{cases} 1, & 0 < \mathbf{x} \\ 0, & 0 \ge \mathbf{x} \end{cases}$$

S denotes a nonvoid set.

Definition: (cf. [5]) A mapping $m: S \times S \rightarrow \mathcal{D}^+$ is said to be a probabilistic pseudometric under \land (\land -pseudometric) on S iff it satisfies the conditions

- (M1) $m(p,p) = \epsilon_0$ for every peS
- (M2) m(p,q) = m(q,p) for every $p,q \in S$
- (M3) $m(p,q) \subseteq \tau_{\Lambda}(m(p,r),m(r,q))$ for every $p,q,r \in S$.

Let m be a Λ-pseudometric on S and for every α∈]0,1[let $m_{\kappa}: S \times S \rightarrow \mathbb{R}^+$ be defined by:

(1)
$$(p,q) \in S \times S$$
: $m_{\alpha}(p,q) := \inf_{\beta \in]1-\alpha,1[} \sup \{x \in \mathbb{R} \mid m(p,q)(x) < \beta\}$.

Lemma: $(m_{\alpha})_{\alpha \in]0,1[}$ is a family of ordinary pseudometrics m_{α} on S provided with the property

(MC)
$$m_{\alpha}(p,q) = \inf_{\beta \in [0,\alpha[} m_{\beta}(p,q))$$
 for every $\alpha \in [0,1[; p,q \in S]]$.

Moreover, the following relation holds for every p,q∈S; x∈R:

$$(2) \quad m(p,q)(x) = \sup\{\alpha \in]0,1[|m_{1-\alpha}(p,q) < x\}.$$

<u>Proof:</u> (M1) implies $m_{\alpha}(p,p)=0$ for every $p,q \in S$; $\alpha \in]0,1[$ and from (M2) we infer $m_{\alpha}(p,q)=m_{\alpha}(q,p)$ for every $p,q\in S$; $\alpha\in]0,1[$. To prove the triangle inequality assume the existence of p,q,r∈S and 0<y∈R with

$$\mathbf{m}_{\alpha}(\mathbf{p},\mathbf{r}) - \frac{\mathbf{y}}{2} \ge \mathbf{m}_{\alpha}(\mathbf{p},\mathbf{q}) + \mathbf{m}_{\alpha}(\mathbf{q},\mathbf{r}) + \frac{\mathbf{y}}{2}$$
. Then

$$m(p,r)[m_{\alpha}(p,r)-\frac{y}{2}] \le 1-\alpha$$
.

Since for some $\beta, \gamma \in]1-\alpha, 1[$ $m(p,q)[m_{\alpha}(p,q)+\frac{y}{4}] \geq \beta \quad \text{and} \quad m(q,r)[m_{\alpha}(q,r)+\frac{y}{4}] \geq \gamma$ we obtain in view of (M3) the contradiction

$$\beta \wedge \gamma \leq m(p,q) \left[m_{\alpha}(p,q) + \frac{y}{4} \right] \wedge m(q,r) \left[m_{\alpha}(q,r) + \frac{y}{4} \right] \leq$$

 $\leq m(p,r)[m_{\alpha}(p,q)+m_{\alpha}(q,r)+\frac{y}{2}] \leq m(p,r)[m_{\alpha}(p,r)-\frac{y}{2}] \leq 1-\alpha$. (MC) follows from the definition.

To prove (2) note that in view of the definitions the following equivalence holds true for every $p,q\in S$; $\alpha\in]0,1[$ and $x\in \mathbb{R}$:

(*)
$$m(p,q)(x) \rightarrow \alpha \iff m_{1-\alpha}(p,q) \leftarrow x$$
.

Proposition: The relation

$$m \mapsto (m_{\alpha})_{\alpha \in]0,1[}$$

defines a bijective mapping $\Omega_{\mbox{\scriptsize S}}$ from the set of all $\mbox{\scriptsize \Lambda}\mbox{-pseudometrics}$ m on S onto the set of all]0,1[-indexed families $(m_{\alpha})_{\alpha \in]0,1[}$ of ordinary pseudometrics m_{α} on S provided with the property (MC).

<u>Proof:</u> The injectivity of Ω_{S} follows immediatly from (2). To prove that Ω_S is surjective let $(m_{\alpha})_{\alpha \in [0,1[}$ be a family of pseudometrics \mathbf{m}_{α} on S possessing the property (MC) and define m:S×S \rightarrow [0,1]^R according to (2). Then in view of (MC) the following relation holds true for every p,qeS; α e]0,1[and xeR:

- (*) $m(p,q)(x) \rightarrow \alpha \Longleftrightarrow m_{1-\alpha}(p,q) \leftarrow x$.
- (i) $m(p,q) \in \mathcal{F}^+$ for every $p,q \in S$ follows immediately from (*).
- (ii) m is a ∧-pseudometric:
- (M1) and (M2) hold true since m_{α} is a pseudometric for all $\alpha \in]0,1[$.

To prove (M3) assume the existence of p,q,r \in S; x,y \in R and $\alpha\in$]0,1[with $m(p,q)(x+y) < 1-\alpha < m(p,r)(x) \land m(r,q)(y)$.

Then we infer from (*) the contradiction

$$x+y \le m_{\alpha}(p,q) \le m_{\alpha}(p,r) + m_{\alpha}(r,q) < x+y$$
.

(iii) Finally, the relation

 $m_{\alpha}(p,q) = \inf_{\beta \in \{1-\alpha,1\}} \sup \{x \in \mathbb{R} | m(p,q)(x) < \beta\} \text{ for every } p,q \in \mathbb{S}; \alpha \in]0,1[$

follows immediately from (*).

According to this Proposition Λ -pseudometrics and]0,1[-indexed families of ordinary pseudometrics provided with the property (MC) are equivalent notions.

In particular, this Proposition shows that pseudometrizable fuzzy neighborhood spaces (S,m) and]0,1[-indexed families $((S,m_{\alpha}))_{\alpha\in]0,1[}$ of ordinary pseudometrizable spaces (S,m_{α}) possessing the property (MC) can be identified in the sense of (1) or (2).

Moreover, in view of Proposition 1 in [2] and Corollary 3.2.2 in [1] this identification preserves topologies; i.e.:

- (i) if (S, Δ) is a pseudometrizable fuzzy neighborhood space with generating \land -pseudometric m on S and $(m_{\alpha})_{\alpha \in]0,1[} := \Omega_S(m)$ then for every $\alpha \in]0,1[$ the α -level-topology of (S, Δ) is generated by the ordinary pseudometric m_{α} on S and
- (ii) if (S,Δ) is a fuzzy neighborhood space and $(m_{\alpha})_{\alpha\in]0,1[}$ is a]0,1[-indexed family of ordinary pseudometrics m_{α} on S provided with property (MC) so that for every $\alpha\in]0,1[$ the α -leveltopology of (S,Δ) is generated by m_{α} then (S,Δ) is generated by $m_{\alpha}^{-1}((m_{\alpha})_{\alpha\in]0,1[})$.

References

- [1] W. Flüshöh: On the representation of fuzzy neighborhood spaces, Comm. IFSA Math. Chapter Vol. 2 (1988) 14-19.
- [2] W. Flüshöh: A characterization of metrizable fuzzy neighborhood spaces, submitted to Comm. IFSA Math. Chapter.
- [3] U.Höhle: Probabilistic metrization of fuzzy uniformities, Fuzzy Sets and Systems 8 (1982) 63-69.
- [4] R. Lowen: Fuzzy neighborhood spaces, Fuzzy Sets and Systems 7 (1982) 165-189.
- [5] B. Schweizer and A. Sklar: Probabilistic metric spaces, North-Holland 1983.