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1. Introduction.

This paper follows Biacino end Gerla [1990]b. In Section 2 we give
further information about the generation of the necessities and the
possibilities. In particuler, we relete the necessities generoated by o finite
initial veluation with Shafer's consonant belief functions. In Section 3 the
lottice of the necessities is examined. In Section 4 the formulass we
propose in Biscino and Gerls [1990]b for the necessities and possibilities
generoted by an initiel valuation are used to define conditionel necessities
ond possibilities. The notion we arrive at is very close to what D.Dubois
ond H.Prede have proposed in D.Dubois and H.Prede [1988].

2. Generstion of necessities ond possibilities: further
informetion.

We say that an initiel velustion is consonent if D¢ is @ finite chain ey <

ey <...<e, ondf(eq) < fleyds. .. < flep)=1.

Proposition 2.1 For every neF(B) the following are equivelent:
8) nis 8 necessity genereted by s finite initiel veluation ;
b) nis generated by & consonant initisl velustion.

The necessities generated by & consonsnt velustion are relsted to the
Shefer's consonent belief functions.

Proposition 2.2. n is 8 completely consistent necessity generated by
8 finite initiel veluation if and only if n is & consonant belief function.

If B is & finite Boolean slgebrs, then every necessity is finitely



generated and therefore the completely consistent necessities coincide
with the consonant belief functions. On the contrary, if B is infinite, then
there exists & completely consistent necessity that is not & consonent
belief function. Indeed, in this case 8 non principel filter exists in B and
its characteristic function is 8 completely consistent necessity that is not
generated by o finite initial veluation.

Proposition 2.3 . The necessity T is completely consistent if and
only if every finite meet of elements of {xeD(/7(x)20} is different from

0. The possibilitg? is completely consistent if and only if every finite
join of elements of {xeD¢/f(x)21} is different from 1.

The following proposition shows that the operstors ~ end ° heve
properties very like to the closure and interior operstors in topological
space theory.

Proposition 2.4 The following hold:
(2.1) f necessity & =7 ;
(2.2) f possibility & f=f
(2.3) T ¢ 1(x) ¢ T(x) for every xeDs
(2.4)  ~T=(~f) ; ~t=(~1y ;(AV=T; (1) =f
(2.5) fagaTe§ ; feg>feg .

’

Proposition 2.5 Given en initial valuation f, we have
(2.6) Cr(f) + Cs(~f) =1

(2.7) fa~f = 1T ()+T(-x)<1+C (1) ;
(28)  fexf = Clf) < TOO+T(-x)e1
(2.9) f2~f ond C.(f)=0 = T=~T ond T prime filter ;
(2.10) f<~f and Cy (=1 = T =~% ond T prime filter .

We say that an initiel veluation f is balenced provided that ~f=f, ie.
X€Dy implies -xeDy ond f(x)+1(-x)=1 for every xeD¢. If the initiel



velustion is belenced then f=~T endT is completely consistent if snd
only if T is & Boolean velustion. An initiel velustion f:B-[0,1] is called
n-steble if f is on extension of f, i.e. T(x)=f(x) for every xeDg; f is colled

p-stable if ¥ is an extension of f.
The following proposition characterizes the p-stable and the n-stable
initiel veluations (see a1so Zhang Guangquen [1988]).

Proposition 2.6 An initiel valuation f such thet 0 and 1 are not in Df

is n-stable if an only if
KA L ARRsZ D T(xA L AT(xp)<f(2)

for every xy,...x,€Ds ond 2eD,. Likewise, f is p-steble if and only if
XV oo vRp2z D 1(x)v L V(% )21(2).

for every x,,...X,€D¢ ond zeDy.

A simple consequence of Proposition 2.6 is thet if Df is 8 chain, then f is

n-stable (p-stable) if and only if it is increesing.
3. The lettices of the necessities.

Proposition 3.1 in Biscino and Gerle [1990]b shows that N(B) is @
complete lattice and that the meets in N(B) coincide with the meets in
F(B). The meximum of N(B) is the completely inconsistent necessity, the
minimum the chereacteristic function of the filter {1}. In N(B) there is no
atom, indeed if neN(B) is not the minimum and we set n'(x)=n(x)/2 if x=z1
end n'(1)=1, then n'<n and n' is different from the minimum. Likewise one
proves that in N(B) there is no co-atom, i.e. no maximal element.

The lattice N(B) is not & sublattice of F(B) since the join of & femily
(nj)je; of necessities in N(B) is equal to (Vni) ~ , in generel. If the

condition
(3.1) ¥x ¥y Vi v ah ni(x)A ny(y) < np(x)A np(y)

is sotisfied, then it is easily proven that the joins in F(B) coincide with the
joins in N(B) . In perticuler this heppens for directed femilies of



necessities.
Let ny and n, be two necessities, we call sum ny+n, of ny and n, its join

(nyvny) in N(B).
Likewise, the cless P(B) of the possibilities is ® complete lattice and

that the joins in P(B) coincide with the joins in F(B). The meet in P(B) of @
femily <p;> of possibilities is the possibility (/\p,-)o ond the property

(3.2) ¥x ¥y Vi) ah nix)vni(y) 2 np(x)v np(y)

assures the coincidence of this possibility with /\pi. If P and po 8re two
possibilities, the product P1*P2 is their meet in P(B). The function
~:N(B)-P(B) is & dusl isomorphism between the 1attices N(B) and P(B).

Proposition 3.1 |If ny and n, ore two necessities and Py ond p, ore

two possibilities then, for every zeB
(3.3) (n]+n2)(z)=\/{nI(x)Anz(g)/xAgsz} i (PP )(2) =\ (x)vpy(x)/xvy22}

(3.4) ~(ng+ny) = (~n)-(~ny) ;  ~(py-pp) = (~p)+(~py) .
(3.5)  Cp(ny+ny)=Vin (x)An,(-x)/xeB} ; Cs(py-P2)=Aln (x)vn,y(-x)/x€B}.
(3.6) nd+nl=n2"" ;  po.pba=povb

We point out thet by Proposition 3.1 we have theat, if f] snd f2 ere

initiel veluations,

(3.7) (Tyvf) =T+ T, ond  (fafy)) =T, - T, .
As o consequence, if D¢ = {eq, ..., e} ond f(e;)= «; , then
- e emn
(3.8) f=n“'1+... +ng
in particuler, if XY= ... = &= &, snd e= 8N ... Al then
(3.9) f=n,

4. Conditionel necessities and possibilities.

Let n be 8 necessity, 8eB an event and let n® be the necessity genersted
by the event e, i.e. the cheracteristic function of the filter generated by e.



The sum n+n® is celled the conditional necessity given the event @ ond we
set

(4.1) n(x/8)=(n+n®)(x).
In perticuler, if n is the necessity genersted by an event e,
n®(-/8)=n®+n® ond , by (3.6), n®(-/8)=n®"?2 .

Proposition 4.1 Given » necessity n end an event o,

i) n(x/e8) = n(e—=x) ; n(e/8)=1 , n(x/1) = n(x) ; Cp(n(-/8)) = n(-e) ;
i) n(xAay/e)=n(x/8)Aan(y/e) ; n(x/evb)=n(x/8)An(x/b) ;

iif) n(e)Aan(x/8)=n(xA8) ; n(x)=n(x/8)Aan(x/-8) ;

iv) n(e)an(x/8) = n(x)An(a/x).

The first equality in i) shows the link between our definition of
conditional necessity and the notion given in D.Dubois end H.Prade [1988].
The difference is that they proposed

n(e—x) if n(-8)<n(a-x)

n(x/a) =

0 otherwise.
Thus, if n(-8)=0, thet is, by the lest equality in i), if n(-/8) is completely
consistent, the two notions eare equivalent.
The equaelity iv) is analogous to Bayes formuls but unfortunsately it is not
possible to obtain n(e/x) as e function of n(x/8), n(x) and n(a) es in the
probebilistic case. Indeed, assume thet h is such ® function, i.e.
n(x/8)=h(n(a),n(x),n(8/x)) for every peir of events x, 8. |n particuler, if n
is the necessity generated by an event e=0, then

n®M9(x) = h(n®(s),n®(x),n®"*(a)).
Now, if e, 8 and x sotisfies eAx<£8, 8<X, e4X, then, since e4® and ens¢x,
we have h(0,0,0) = 1. On the other hand, if eA8£x and eAax<£8, then, since
e4£9, e4x, we have h(0,0,0)=0, an sbsurdity.
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