SOME RESULTS ON WEAK t-NORMS*

János C. FODOR

Computer Center, Eötvös Loránd University H-1502 Budapest 112, P.O. Box 157, Hungary

Abstract The notion of weak t-norms - as a model for intersection of fuzzy sets - was introduced in [1]. In this paper we present some results on the representation of an important class of weak t-norms and some related problems such as the properties of negations based on weak t-norms and comparison of weak t-norms via their generator functions.

1. Introduction

First we recall the notion of a weak t-norm from [1]. Let I = [0,1] and $I_0 = (0,1)$.

Definition 2.1. A function w:IxI \rightarrow I will be called weak t-norm if it has the following properties:

$$w(1,a) = a, w(a,1) \le a \quad \forall a \in I,$$
 (1.1)

$$w(a,b) \le w(c,d)$$
 when $a \le c$, $b \le d$. (1.2)

If w is a weak t-norm then its right pseudocomplement is defined by

$$\vec{w}(a,b) = \sup \{ x ; w(a,x) \le b \}.$$
 (1.3)

Denote W the class of weak t-norms with property

$$w(a,x)$$
 is left-continuous in x on I for every $a \in I$. (1.4)

We proved in [1] the following result concerning w.

^{*}This research has been partially supported by OTKA-27-5-606 and FKP-400-0113.

Proposition 1.1. If $w \in W$ then we have

- (1) $\overrightarrow{w}(a,x)$ is right-continuous with respect to x on I for every $a \in I$.
- (2) If $a \leq c$ then $w'(a,b) \geq w'(c,b)$.
- (3) If $b \leq d$ then $\vec{w}(a,b) \leq \vec{w}(a,d)$.
- (4) If $a \leq b$ then $w^{-}(a,b) = 1$.
- (5) $\vec{w}(1,b) = b \quad \forall b \in I.$
- (6) $c \leq w^{\uparrow}(a,b)$ if and only if $w(a,c) \leq b$. \square

Properties (1) - (5) are accepted for a fuzzy implication function in the literature, see e.g. Trillas and Valverde [5]. So w seems to be a good model for a fuzzy implication. On the other hand, the class W is fairly broad not only for the theory but also for the applications, see examples in [1]. However, the Exchange Principle, i.e.,

$$\vec{w}(a, \vec{w}(b, c)) = \vec{w}(b, \vec{w}(a, c)),$$
 (1.5)

does not hold automatically when $w \in W$.

We proved in [2] the next result on the Exchange Principle.

Proposition 1.2. Assume that $w \in W$. w^{\rightarrow} fulfils (1.5) if and only if

$$w(a,w(b,c)) = w(b,w(a,c))$$
. \square

In the next section we investigate weak t-norms having property (1.5).

2. Representation of a class of weak t-norms

Assume that $w \in W$ is such that it has the following properties as well:

- i) $\psi(a) = w(a,1)$ is continuous, strictly increasing function
- $ii) \quad w(a,w(b,c)) = w(b,w(a,c))$
- iii) $w(a, \psi(a)) < \psi(a)$ for $a \in I_0$.

Denote this subclass of W by W_A . We can present a representation theorem for members of W_A as follows.

Theorem 2.1. (Representation theorem)

 $w \in W_A$ if and only if there exist functions $f,g:I \to R_+$ with properties

- (i) f,g are strictly decreasing, continuous functions
- (ii) $g(x) \ge f(x) \quad \forall x \in I$
- (iii) f(1) = g(1) = 0

such that

$$w(a,b) = f^{(-1)}(g(a) + f(b)),$$
 (2.1)

where $f^{(-1)}$ denotes the pseudoinverse of f . \Box

This theorem can be seen as a generalization of the representation theorem for t-norms, see Ling [3] or Schweizer and Sklar [4].

We will call the ordered pair (f,g) additive generators of w if w has the form (2.1) with f and g.

Theorem 2.2. Assume that for a $w \in W_{\Lambda}$ we have

$$w(a,b) = f_1^{(-1)}(g_1(a) + f_1(b)) = f_2^{(-1)}(g_2(a) + f_2(b)).$$

Then there exists an $\alpha > 0$ such that $f_2 = \alpha f_1$ and $g_2 = \alpha g_1$.

We say that a weak t-norm w has zero divisors if there exist a,b > 0 such that w(a,b) = 0. A weak t-norm w is strict if it is strictly increasing on $I_0 \times I_0$.

Theorem 2.3. Assume that $w \in W_A$ with additive generators (f,g). Then

- a) w has zero divisors if and only if $f(0) < +\infty$,
- b) w is strict if and only if $f(0) = \lim_{x\to 0} f(x) = +\infty$. \Box

3. Negations based on weak t-norms

A function $n:I\rightarrow I$ is called *negation* if n is nonincreasing and n(0) = 1, n(1) = 0. A negation is *strict* if n is continuous and decreasing. A strict negation is *strong* if n(n(a)) = a for every $a \in I$.

As in the case of t-norms, one can define a negation by $\vec{w}(a,0)$.

Theorem 3.1. Suppose that $w \in W_A$. Then

a)
$$\overrightarrow{w}(a,0) = \begin{cases} 0 & \text{if } a > 0 \\ 1 & \text{if } a = 1 \end{cases}$$
 when w is strict;

b) If w has zero divisors then there exists an $a_0 < 1$ such that $\vec{w}(a,0) = 1$ for $a \in [0,a_0]$ and $\vec{w}(a,0)$ is strictly decreasing on $(a_0,1]$. \square

Theorem 3.2. Let $w \in W_A$ be such that it has zero divisors. Then a) $\overrightarrow{w}(a,0)$ is a strict negation <u>iff</u> $g(0) = f(0) < +\infty$;

b) $\overrightarrow{w}(a,0)$ is a strong negation <u>iff</u> g(x) = f(x) and $f(0) < +\infty$.

This means that $\overrightarrow{w}(a,0)$ is a strong negation if and only if w is an Archimedian t-norm with zero divisors.

4. Comparison of weak t-norms

It is well-known from the theory of t-norms that one can express the relation $T_1(a,b) \leq T_2(a,b)$ via the generator functions of T_1 and T_2 . This is also the case in connection with weak t-norms.

Theorem 4.1. Assume that w_1 , $w_2 \in W_A$. Then $w_1 \le w_2$ if and only if $f_1 \circ f_2^{(-1)}(u+v) \le g_1 \circ g_2^{(-1)}(u) + f_1 \circ f_2^{(-1)}(v)$

for every $u,v \in I$, where (f_1,g_1) and (f_2,g_2) are the generator functions of w_1 and w_2 , respectively. \square

Corollary. If $f_1 \circ f_2^{(-1)}$ is subadditive then $w_1 \leq w_2$. \square

REFERENCES

- [1] J.C. Fodor, Strict preference relations based on weak t-norms, Fuzzy Sets and Systems, to appear
- [2] J.C. Fodor, On fuzzy implication operators, Fuzzy Sets and Systems, submitted
- [3] C.H. Ling, Representation of associative functions, Publ. Math. Debrecen 12 (1965) 189-212.
- [4] B. Schweizer and A. Sklar, Probabilistic Metric Spaces (North-Holland, Amsterdam, 1983).
- [5] E. Trillas and L. Valverde, On implication and indistinguishability in the setting of fuzzy logic, in: J.Kacprzyk and R.R. Yager, Eds., Management Decision Support Systems Using Fuzzy Sets and Possibility Theory (Verlag TÜV Rheinland, Köln, 1985) 198-212.