L-Fuzzy extended and contracted ideals

M.M.Zahedi

Department of Mathematics, Kerman University

Kerman Iran

In this note a characterization of the L-fuzzy ideal generated by a L-fuzzy subset is given and then by giving the concepts of L-fuzzy contracted and extended ideals, some related theorems are proved.

Keywords: Ring, Ideal, L-fuzzy ideal, L-fuzzy contracted, extended and prime ideal, L-fuzzy ideal generated by a L-fuzzy subset.

1. Introduction

Zadeh in [9] introduced the notion of a fuzzy subset A of a nonempty set X as a function from X to [0,1]. Goguen [1], generalized the fuzzy subsets of X, to L-fuzzy subsets, a function from X to a Since then several authors have lattice L. developed interesting results on fuzzy ideals of a ring. For example see [3,4,5,6,8,10,11]. In [10], we have given a characterization of a L-fuzzy ideal generated by a L-fuzzy point. In this note, for commutative rings having identity, we give a characterization of the L-fuzzy ideal generated by a L-fuzzy subsets. Then we define the concept of L-fuzzy extended and contracted ideals and we prove that there exists a bijection between the set of all L-fuzzy contracted ideals onto the set of all L-fuzzy extended ideals of homomorphism rings. Moreover we prove that every L-fuzzy ideal of the ring of quotient of a given ring is a L-fuzzy extended ideal. Also a necessary and sufficient condition of a L-fuzzy contracted prime ideal is given, and it is shown that there is a bijection between the set of all L-fuzzy prime ideals of the ring of quotients to a class of L-fuzzy prime ideals of the ring.

2. Preliminaries

We fix $L=(L, \leq, \vee, \wedge)$ as a completely distributive lattice, which has least and greatest elements, say 0 and 1, and for simplicity of notation we write "sup" and "inf" for " \vee " and " \wedge ", respectively. If a,b \(\) we write a\(\) b if b\(\) a.

For a nonempty set X, let

From now on we write R and S for rings.

Let $f:R\longrightarrow S$ be a map, A = F(R) and B = F(S). Then we define f(A) = F(S) and $f^{-1}(B) = F(R)$, by

$$f(A)(y) = \begin{cases} \sup A(x) & \text{if} & f^{-1}(y) \neq \emptyset \\ x \in f^{-1}(y) & \text{if} & f^{-1}(y) = \emptyset, \end{cases}$$

 $f^{-1}(B)(x)=B(f(x)),$

respectively.

Definition 2.1. Let A = F(R). Then A is called a L-fuzzy left (right) ideal of R if and only if for all x,y = R.

- (i) A is a L-fuzzy subgroup of (R,+); i.e., $A(x-y) \ge \inf (A(x),A(y))$
- (ii) $A(xy) \ge A(y) \quad (A(xy) \ge A(x))$.

Note that (i) above implies that A(x)=A(-x). A is called a L-fuzzy ideal of R if and only if it is

both L-fuzzy left and L-fuzzy right ideal of R.

We let I(R) be the set of all L-fuzzy ideals of R.

Theorem 2.2 [4, Theorem 4.1]. Let AcF(R). The L-fuzzy subset C(x) = inf B(x) is the smallest ASB cI(R)

L-fuzzy ideal of R containing A, i.e., ASC and for any C'cI(R) such that ASC', then CSC'.

Definition 2.3. The L-fuzzy ideal C in Theorem 2.2 is called the L-fuzzy ideal generated by A and is denoted by $\langle A \rangle$.

Lemma 2.4. Let f:R→S be a homomorphism. Then

- (i) $f(A_1) \subseteq f(A_2)$ if $A_1, A_2 \in F(R)$ and $A_1 \subseteq A_2$
- (ii) f⁻¹(B) eI(R) if BeI(S)
- (iii) $f^{-1}(B_1) \subseteq f^{-1}(B_2)$ if $B_1, B_2 \in F(S)$ and $B_1 \subseteq B_2$
- (iv) $A \le f^{-4}(f(A))$ if $A \in I(R)$
 - (v) f(f-1(B))SB if BeI(S).

Theorem 2.5.[8, Theorem 2.1].(a). Let p be a L-fuzzy prime ideal of R and α a prime element in L. Let $P \in F(R)$, defined by $P(x) = \begin{cases} 1 & \text{if } x \in p \\ \alpha & \text{otherwise} \end{cases}$ then P is a L-fuzzy prime ideal.

(b) Conversely any L-fuzzy prime ideal can be obtained as above.

3. L-fuzzy extended and contracted ideals

From now on all rings are commutative with identity.

Theorem 3.1. Let $A \in F(R)$. Then $\langle A \rangle$ is equal to B, where B is defined as follows

Definition 3.2. Let $f:R \rightarrow S$ be a homomorphism, and $I \in I(R)$, $J \in I(S)$. Then $I = \langle f(I) \rangle \in I(S)$ and $J = f^{-1}(J) \in I(R)$, are called the L-fuzzy extension of I and the L-fuzzy contraction of J under f, respectively.

Definition 3.3. JeI(S) is called a L-fuzzy extended ideal if $J=I^{\bullet}$ for some IeI(R) and IeI(R) is called a L-fuzzy contracted ideal if $I=J^{\bullet}$ for some JeI(S).

Lemma 3.4. (i) If $I, I' \in F(R)$ are such that $I \subseteq I'$, then $\langle I \rangle \subseteq \langle I' \rangle$

(ii) If $I \in I(R)$, then $I \subseteq I^{\bullet c} = (I^{\bullet})^{c}$

(iii) If $J \in I(S)$, then $J^{co} = (J^c)^o \subseteq J$.

Lemma 3.5. For IeI(R) and JeI(S),

(i) $I^{\bullet c \bullet} = I^{\bullet}$,

(ii) J^{cec}=J^c.

Theorem 3.6. Let $f:R\longrightarrow S$ be a homomorphism. Then the mapping $I\longmapsto I^{\bullet}$ is a bijection between the

set, %, of all L-fuzzy contracted ideals in R onto the set, %, of all L-fuzzy extended ideals in S.

In the following theorem by $R_{\rm g}$ we mean the ring of quotient of R, where S is a multiplicative set as in [7, page 41].

Theorem 3.7. Let S be a multiplicative set and $f:R\longrightarrow R_g$ be defined by f(a)=(a/1). Then every $J \in I(R_g)$ is a L-fuzzy extended ideal.

Theorem 3.8. Let $f:R\longrightarrow S$ be a homomorphism of rings and P a L-fuzzy prime ideal of R. Then P is the contraction of a L-fuzzy prime ideal of S if and only if $P=P^{\bullet c}$.

Theorem 3.9. Let f:R→S be a homomorphism of rings. If S is a faithfully falt R-module; then every L-fuzzy prime ideal of R is the contraction of a L-fuzzy prime ideal of S.

Theorem 3.10. The L-fuzzy prime ideals of $R_{\rm g}$ are in 1-1 correspondence with the L-fuzzy prime ideals of R, which attains a prime element of L on S.

ACKNOWLEDGMENTS. The author is indebted to Dr. N. Mashinchi for his valuable suggestions.

REFERENCES

- [1] J.A.Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18(1967) 145-174.
- [2] N.S.Gopalakrishnan, Commutative Algebra, Published by oxonian press, Pvt. Ltd. N-56 Connaught Circus, New Delhi 110001, 1984.
- [3] D.S.Malik and John N.Mordeson, Fuzzy maximal, radical, and primary ideals of a ring, Inform. Sci. to appear.
- [4] M.Mashinchi and M.M.Zahedi, On fuzzy ideals of a ring. Submitted for publication.
- [5] T.K.Mukhrejee and M.K.Sen, On fuzzy ideals in rings, in: Preprints of second IFSA congress Vol. 1(Tokyo, July 20-25, 1987) 44-50.
- [6] T.K.Mukhrejee and M.K.Sen, On fuzzy ideals in rings I, Fuzzy Sets and Systems 21(1987) 99-104.
- [7] D.G.Northcott, "Ideal Theory", Cambrigde at the university Press, 1953.
- [8] U.M.Swamy and K.L.N.Swamy, Fuzzy prime ideals of rings, JMMA 134(1988) 94-103.
- [9] L.A.Zadeh, Fuzzy sets, Information and control 8(1965) 338-353.
- [10] M.M.Zahedi, A characterization of L-fuzzy prime ideals, submitted for publication.
- [11] Zhang Yue, Prime L-fuzzy ideals and primary L-fuzzy ideals, Fuzzy Sets and Systems 27(1988) 345-350.