- PROPERTIES FOR GREY CONTINUOUS MAPPING SOME ZHI - MIN, Handan Teacher's College Handan, Hebei, China.
- In this paper some properties of grey continuous ABSTRACT. mapping from a grey topological space to a grey topotogical space is studied.
- KEYWORDS: Grey continuous mapping, grey point, grey open set and grey close set.

I. INTRODUCTION

We gave the definition and some properties of grey continuous mapping in [2] and [3]. We shall study other properties of grey continuous mapping on this basis.

Theorem 1: Let f be a mapping from the grey topological space (X, \mathcal{I}) to the grey topological space (Y, \mathcal{I}') .

- (1) If A is a grey subset of X and B is a grey subset of Y, $\vec{U}_{f(A)}(y) \leq \vec{U}_{B}(y), \ \underline{U}_{f(A)}(y) \leq \underline{U}_{B}(y), \ \forall y \in Y.$ then $\Pi_{A}(x) \leq \Pi_{f(B)}(x), \ \Pi_{A}(x) \leq \Pi_{f(B)}(x), \ \forall x \in X.$
- (2) If $At(t \in T)$ are grey subsets of X, then

 $f[\bigcup_{t\in T} At] = \bigcup_{t\in T} f[At], f[\bigcap_{t\in T} At] = \bigcap_{t\in T} f[At].$ (3) If Bt(t \in T) are grey subsets of Y, then

 $f^{-1}[\bigcup_{t\in T}Bt]=\bigcup_{t\in T}f^{-1}[Bt], f^{-1}[\bigcap_{t\in T}Bt]=\bigcap_{t\in T}f^{-1}[Bt].$ Definition 1: Let (X,\mathcal{I}) be a grey topological space, is \mathcal{I} is a subfamily of J. If every grey open set is a union of some members of B, then B is called base of J.

If B' is a subfamily of Jand every member of B is a intersection of finite grey set of B', then B' is called subbase of J.

- II. THE PROPERTIES OF GREY CONTINUOUS MAPPING Theorem 2: Let f be a mapping from the grey topological space (X, \mathcal{I}) to the grey topological space (Y, \mathcal{I}') , then following are equivalent.
- (1) f is the grey continuous mapping.

- (2) The inverse image $f^{-1}[B]$ of grey close set B in Y is the grey close set in X.
- (3) There exists subbase \mathcal{B} of topology \mathfrak{I}' in Y such that inverse image $f^{-1}[C]$ of every member C of it is the grey open set of topology \mathfrak{I} in X.
- (4) The inverse image $f^{-1}[B]$ of neighbourhood B of image f(a) of every grey point a in X is neighbourhood of grey point a.
- (5) If choose neighbourhood B of image f(a) of every grey point a in X, then always there exists a neighbourhood A of a such that $\overrightarrow{\Pi}_{f(A)}(y) < \overrightarrow{\Pi}_{B}(y)$, $\underline{\Pi}_{f(A)}(y) < \underline{\Pi}_{B}(y)$, $\forall y \in Y$. Proof: From [3] we have (1) \rightarrow (2).
- If (2) is correct, B is a grey close set in Y and $f^{-1}[B]$ is a grey close set in X, then B^{c} is the grey open set in Y(or $B^{c} \in \mathcal{I}'$) and $(f^{-1}[B])^{c}$ is the grey open set in X. Hence $f^{-1}[B^{c}] = (f^{-1}[B])^{c}$ is the grey open set in X(or $f^{-1}[B^{c}] \in \mathcal{I}$).

From [2] we have f is the grey continuous mapping.

So
$$(2) \rightarrow (1)$$
.

Hence (1) $\leftarrow \rightarrow$ (2).

Since f is the grey continuous mapping, hence $\forall B \in \mathcal{I}' \rightarrow f^{-1}[B] \in \mathcal{I}$. Also $\mathcal{H} \subseteq \mathcal{I}'$, thus $\forall C \in \mathcal{H} \subseteq \mathcal{I}' \rightarrow f^{-1}[C] \in \mathcal{I}$. Hence there exists subbase \mathcal{H} of topology \mathcal{I}' in Y such that inverse image $f^{-1}[C]$ of every member C of it is the grey open set of topology \mathcal{I} in X.

So
$$(1) \rightarrow (3)$$
.

Since B is the subbase of J, thus every grey open set of is a union of intersection of some finite grey set of B (or $\forall D \in \mathcal{J}$, $\exists Di(i=1,2,...,n) \in B$, s.t. $D=\cup (\cap Di)$).

From theorem (3) we have $f^{-1}[\cup (\cap Di)] = \cup \cap (f^{-1}[Di])$.

If (3) is correct, then inverse image $f^{-1}[Di]$ of members Di of Mare grey open sets of $\mathcal J$ in X (or $f^{-1}[Di] \in \mathcal J$).

Hence $f^{-1}[D] = f^{-1}[U(\cap Di)] = U\cap (f^{-1}[Di]) \in \mathcal{I}$, thus f is the grey continuous mapping.

So $(3) \rightarrow (1)$. Hence $(1) \leftarrow \rightarrow (3)$.

Choose any grey point $a \in X$ and any neighbourhood $B \in \mathcal{U}_{f(A)}$. From the definition of neighbourhood we have there exists $C \in \mathcal{I}'$ such that $f(a) \in C \subseteq B$. Hence $a \in f^{-1}[C] \subseteq f^{-1}[B]$.

Also f is the grey continuous mapping, then $f^{-1}[C] \in \mathcal{J}$. Hence there exists $f^{-1}[C] \in \mathcal{J}$ such that $a \in f^{-1}[C] \subseteq f^{-1}[B]$, thus $f^{-1}[B] \in \mathcal{U}_{\mathbf{Q}}$. Hence the inverse image $f^{-1}[B]$ of neighbourhood B of image f(a) of every grey point a in X is neighbourhood of grey point a.

So $(1) \rightarrow (4)$.

Choose any $a \in X$ and $B \in \mathcal{U}_{RO}$. From (4) we have $f^{-1}[B] \in \mathcal{U}_{A}$. From [3] we have $\overline{\coprod}_{f(f^{-1}(B))}(y) \leq \overline{\coprod}_{B}(y)$, $\underline{\coprod}_{f(f^{-1}(B))}(y) \leq \underline{\coprod}_{B}(y)$, $\forall y \in Y$. Let $f^{-1}[B] = A$, then $\forall a \in X$ and $\forall B \in \mathcal{U}_{RO}$, there exists $A \in \mathcal{U}_{A}$ such that $\overline{\coprod}_{f(A)}(y) \leq \overline{\coprod}_{B}(y)$, $\underline{\coprod}_{f(A)}(y) \leq \underline{\coprod}_{B}(y)$, $\forall y \in Y$. So (4)—(5).

Let B be a grey open set in Y (or $B \in \mathcal{I}'$) and $I = \{x \in X | \text{Lif}(x) > 0\}$.

Choose any $x \in X$ and let $U_{P(B)}(x) = \lambda$, $U_{P(B)}(x) = \lambda$, and y = f(x). Then $f(xx\lambda) = yx\lambda$, hence $yx\lambda \in B$ and B is the open neighbourhood of $yx\lambda$.

From (5) we have there exists open neighbourhood $A \in \mathcal{U}_{XXA}$ such that $\overline{U}_{f(A)}(y) \leqslant \overline{U}_{B}(y)$, $\underline{U}_{f(A)}(y) \leqslant \underline{U}_{B}(y)$, $\forall y \in Y$.

Hence all there exists open neighbourhood $A \in U_{XX}, \forall x \in I$. Let $C = \bigcup A$, then $I_C(x) > \bigcup_{f \in B}(x), \bigcup_{C}(x) > \bigcup_{f \in B}(x), \forall x \in X$.

Also choose any $x \in I$, there exists open neighbourhood A of x such that $\widehat{\coprod}_{f(A)}(y) \leq \widehat{\coprod}_{B}(y)$, $\underset{f(A)}{\coprod}_{f(A)}(y) \leq \underset{g(Y)}{\coprod}_{g(Y)}$. From theorem1(2) we have $f[C] = f[\bigcup A] = \bigcup f[A]$. Hence

 $\Box f(C)(y) < \Box B(y), \ \underline{U}f(C)(y) < \underline{U}B(y), \ \forall y \in Y.$ From theorem1(1) we have $\underline{U}_{C}(x) < \underline{U}f(B)(x), \ \underline{U}_{C}(x) < \underline{U}f(B)(x),$ $\forall x \in X.$ Hence $\underline{U}_{C}(x) = \underline{U}f(B)(x), \ \underline{U}_{C}(x) = \underline{U}f(B)(x), \ \forall x \in X.$ So $C = U A = f^{-1}[B]$.

A(so A is the grey open set, thus $f^{-1}[B]$ is the grey open set. From [2] we have f is the grey continuous mapping. So $(5) \rightarrow (1)$.

Theorem 3: Let f be a mapping from the grey topological space (X, \mathcal{I}) to the grey topological space (Y, \mathcal{I}') . If f is the grey continuous mapping, then given any coincidence field $B \in \mathcal{U}_{RA}$ of image f(a) of every grey point a in X, always there exists coincidence field $A \in \mathcal{U}_{A}$ of a in X such that

 $\overline{U}_{f(A)}(y) \leq \overline{U}_{B}(y), \quad \underline{U}_{f(A)}(y) \leq \underline{U}_{B}(y), \quad \forall y \in Y.$ Proof: Choose any grey point $a=x_{A\Delta} \in X$, and $B \in \mathcal{U}_{f(A)}$ is any coinciderce field of f(a). From the definition of coinciderce field we have there exists $C \in \mathcal{D}^{1}$ such that $f(a) \Delta C \subseteq B$.

Let $A=f^{-1}[C]$. Since f is the grey continuous mapping, hence $A\in \mathcal{I}$.

Let y=f(x), then $U_A(x)=U_F(C)(x)=U_C(f(x))=U_C(y)>1-\Delta$. $\to U_A(x)+\Delta>1$. Hence $a\triangle A$, so $A\in U_A$ is the coinciderce field of a And from [3] we have $\overline{U_F(A)}(y)=\overline{U_F(F(C)}(y)<\overline{U_F(Y)}, \ \underline{U_F(A)}(y)=\underline{U_F(F(C)}(y)<\underline{U_F(Y)}, \ \forall y\in Y.$ Hence given any coinciderce field $B\in U_{F(A)}$ of image f(a) of every grey point a in X, always there exists coinciderce field $A\in U_A$ of a in X such that

 $\overline{U}_{f(A)}(y) < \overline{U}_{B}(y), \underline{U}_{f(A)}(y) < \underline{U}_{B}(y), \forall y \in Y.$ Theorem 4: Let f be a mapping from the grey topological space (X,\mathcal{I}) to the grey topological space (Y,\mathcal{I}') , B is a grey subset of Y. If for any $B \in \mathcal{I}'$ there always hold

Then f is the grey continuous mapping.

Proof: Suppose B is the grey close set of Y, then $\vec{B}=B$.

Also $\overrightarrow{U}_{F(B)}(x) < \overrightarrow{U}_{F(B)}(x)$, $\overrightarrow{U}_{F(B)}(x) < \overrightarrow{U}_{F(B)}(x)$, Hence $\overrightarrow{U}_{F(B)}(x) < \overrightarrow{U}_{F(B)}(x) = \overrightarrow{U}_{F(B)}(x)$, $\overrightarrow{U}_{F(B)}(x) < \overrightarrow{U}_{F(B)}(x) = \overrightarrow{U}_{F(B)}(x)$, $\overrightarrow{U}_{F(B)}(x) < \overrightarrow{U}_{F(B)}(x) = \overrightarrow{U}_{F(B)}(x)$, $\overrightarrow{V}_{X} \in X$.

Also it is obvious $\widehat{U}_{f(B)}(x) > \widehat{U}_{f(B)}(x)$, $U_{f(B)}(x) > U_{f(B)}(x)$

 $\forall x \in X$. Hence $\overrightarrow{U_{f'(B)}}(x) = \overrightarrow{U_{f'(B)}}(x)$, $\overrightarrow{U_{f'(B)}}(x) = \overrightarrow{U_{f'(B)}}(x)$, $\forall x \in X$. Then $f^{-1}[B] = f^{-1}[B]$. So $f^{-1}[B]$ is the grey close set of X. From theorem2 we have f is the grey continuous mapping. Corollary: Let f be a mapping from the grey topological space (X, \mathcal{I}) to the grey topological space (Y, \mathcal{I}') , A is a grey subset of X. If for any $A \in \mathcal{I}$ there always hold

 $\widehat{U}_{f(A)}(y) < \widehat{U}_{f(A)}(y), \underline{U}_{f(A)}(y) < \underline{U}_{f(A)}(x), \forall x \in X.$ Then f is the grey continuous mapping.

REFERENCES

- [1] Wu Heqin, Wang Qingyin, Theory of Compound Fuzzy Sets, Initial Inquisition of the Theory of Grey Numbers.

 Proceeding of NAFIPS' 88.
- [2] Yang Zhimin, Tian Zukai, Grey Topological Space. BUSEFAL, issue n° 39.
- [3] Yang Zhimin, Connectedness of Grey Topoogicat Space. BUSEFAL, issue n° 40.