ON THE EXISTENCE OF ONE-POINT ULTRA-FUZZY COMPACTIFICATIONS OF FUZZY NEIGHBORHOOD SPACES

Wolfgang Flüshöh
Fachbereich Mathematik
Bergische Universität-Gesamthochschule Wuppertal
Gaußstraße 20,5600 Wuppertal 1,Federal Republic of Germany

In terms of the theory of ordinary compact topological spaces we give a necessary and sufficient condition for a fuzzy neighborhood space to possess a one-point ultra-fuzzy compactification.

First of all, in section 0 we collect some definitions and facts which will be needed in the sequel.

In section 1 we describe a method of constructing a one-point ultrafuzzy quasi-compactification for an arbitrary fuzzy neighborhood space.

By the aid of this one-point ultra-fuzzy quasi-compactification in section 2 we give a necessary and sufficient condition for a fuzzy neighborhood space to possess a one-point ultra-fuzzy compactification.

Finally we present an example of a fuzzy neighborhood space not possessing a one-point ultra-fuzzy compactification.

0. Preliminaries

S denotes a nonvoid set and P(S) the power set of S.

For the definition and the fundamental properties of fuzzy neighborhood spaces the reader is referred to [5].

If (S,Δ) is a fuzzy neighborhood space with associated fuzzy neighborhood system $(U_p)_{p\in S}$ in S and α is an element of [0,1[then the family $\iota_{\alpha}((U_p)_{p\in S}):=(U(p,\alpha))_{p\in S}$ given by

$$\mathtt{peS}\colon \ \mathtt{U}(\mathtt{p},\alpha) := \ \{\mathtt{U} \in \mathtt{P}(\mathtt{S}) \ \big| \ \ \mathtt{f} \in \mathtt{U}_{\mathtt{p}}, \ \ \mathtt{g} \in \mathtt{J}(\mathtt{1}-\alpha[: \ \{\mathtt{f} \mathtt{2} \mathtt{\beta}\} \subseteq \mathtt{U}\}$$

is the ordinary neighborhood system in S defining the α -level-topology of (S,Δ) . The associated topological space will be denoted (S,Δ_{α}) .

Moreover, $\iota_{\tilde{U}}((U_p)_{p\in S})$ is the ordinary neighborhood system in S belonging to the 1-topology of (S, Δ) (cf. [3]).

In this connection we need the following result:

0.1 Proposition: (cf. [1]) The relation

$$(U_p)_{p \in S} \mapsto (\iota_{\alpha}((U_p)_{p \in S}))_{\alpha \in [0,1[}$$

defines a bijective mapping from the set of all fuzzy neighborhood systems $(U_p)_{p\in S}$ in S onto the set of all]0,1[-indexed families $((U(p,\alpha))_{p\in S})_{\alpha\in]0,1[}$ of ordinary neighborhood systems $(U(p,\alpha))_{p\in S}$ in S provided with the property

(NC)
$$U(p,\alpha) = \bigcup_{\beta \in]\alpha,1[} U(p,\beta)$$
 for every $\alpha \in]0,1[; p \in S]$.

In particular, for every fuzzy neighborhood space (S, Δ) the subsequent conditions are equivalent:

- (i) (S, Δ) is topologically generated (cf. [3])
- (ii) For some ordinary topology ∤ on S we have:

$$\Delta_{\alpha} = 7$$
 for every $\alpha \in]0,1[$.

In this case, Δ is said to be topologically generated by $\mathcal{F}(cf. [3])$.

- <u>0.2 Proposition:</u> Let (S, Δ) and (T, θ) be fuzzy neighborhood spaces. Then for every mapping a:S \rightarrow T the following conditions are equivalent:
- (i) a is $\Delta \theta$ -continuous (cf. [5],[4])
- (ii) a is $\Delta_{\alpha} \theta_{\alpha}$ -continuous for every $\alpha \in]0,1[$.

In particular, if SsT then the subsequent conditions are equivalent:

- (i) (S, Δ) is a subspace of (T, θ) (cf. [4])
- (ii) (S, Δ_{α}) is a subspace of (T, θ_{α}) for every $\alpha \in]0,1[$.

In the sequel (S,Δ) denotes a fuzzy neighborhood space with related fuzzy neighborhood system $(U_p)_{p\in S}$ in S. Further, for every $\alpha\in]0,1[$, $H_\alpha:P(S)\to P(S)$ denotes the ordinary closure operator belonging to the α -level-topology of (S,Δ) . Then (NC) is equivalent to the condition

(CC)
$$H_{\alpha}(A) = \bigcap_{\beta \in]\alpha, 1[} H_{\beta}(A)$$
 for every $\alpha \in]0, 1[; A \in P(S)]$.

Moreover, the closure operator $H_{\hat{Q}}$ related to the 1-topology of (S,Δ) is given by:

$$H_0(A) = \bigcap_{\alpha \in [0,1[} H_{\alpha}(A) \text{ for every } A \in P(S) .$$

- <u>0.3 Definition</u>: a) (cf. [2],[6]) (S, Δ) is said to be ultra-fuzzy quasi-compact (ultra-fuzzy compact) iff the 1-topology of (S, Δ) is quasi-compact (compact; i.e. quasi-compact and Hausdorff-separated).
- b) A fuzzy neighborhood space $(\hat{S}, \hat{\Delta})$ is called a one-point ultra-fuzzy quasi-compactification (ultra-fuzzy compactification) of (S, Δ) iff the following conditions are satisfied:
- (i) $(\hat{S}, \hat{\Delta})$ is ultra-fuzzy quasi-compact (ultra-fuzzy compact)
- (ii) (S,Δ) is homeomorphic with a subspace (T,Θ) of $(\hat{S},\hat{\Delta})$, where the complement $(\hat{S},\hat{\Delta})$ of T in \hat{S} contains exactly one point .

1. A one-point ultra-fuzzy quasi-compactification

Let Γ denote the set of all Δ_0 -relatively-quasi-compact subsets of S and for every $\alpha \in]0,1[$ let the subset $Q(\alpha)$ of P(S) be given by:

$$Q(\alpha) := \{A \in P(S) \mid \exists \beta \in]\alpha, 1[: H_{\beta}(A) \in \Gamma\}$$
.

1.1 Lemma: $((Q(\alpha))_{\alpha \in [0,1]}$ possesses the properties:

- (QS1) $\alpha \in]0,1[: \emptyset \in Q(\alpha)]$
- $(QS2) \qquad \alpha =]0,1[: A_1,A_2 \in Q(\alpha) \qquad \Longrightarrow \qquad A_1 \cup A_2 \in Q(\alpha)$
- $(QS3) \quad \alpha \in]0,1[: A \in Q(\alpha) \implies H_{\alpha}(A) \in Q(\alpha)$
- $(QS4) \quad \alpha \in]0,1[: Q(\alpha) = \bigcup_{\beta \in]\alpha,1[} Q(\beta) .$

 $\underline{\text{Proof:}}$ In view of (CC) the assertion follows immediately from the definitions.

Let ω be any object not belonging to S and define $\hat{S} := S \cup \{\omega\}$. Further, for every $\hat{p} \in \hat{S}$ and every $\alpha \in]0,1[$ let the subset $\hat{U}(\hat{p},\alpha)$ of $P(\hat{S})$ be defined according to:

$$\hat{\hat{\mathbb{U}}}(\hat{p},\alpha) := \left\{ \begin{array}{l} \{\hat{\mathbb{U}} \in P(\hat{S}) \mid \exists \ \mathbb{U} \in \mathbb{U}(p,\alpha) \colon \ \mathbb{U} \subseteq \hat{\mathbb{U}}\}, \ \text{if } \hat{p} = p \notin S \\ \\ \{\hat{\mathbb{U}} \in P(\hat{S}) \mid \exists \ A \in \mathbb{Q}(\alpha) \colon \ \{\omega\} \cup \hat{\mathbb{U}}_{S} A \subseteq \hat{\mathbb{U}}\}, \ \text{if } \hat{p} = \omega \ . \end{array} \right.$$

1.2 Lemma: For every $\alpha \in]0,1[$, $(\hat{U}(\hat{p},\alpha))$, is the neighborhood-peS system belonging to the α -level-topology of a fuzzy neighborhood space $(\hat{S},\hat{\Delta})$.

 (S, Δ) is a subspace of $(\hat{S}, \hat{\Delta})$.

<u>Proof:</u> From (QS1), (QS2) and (QS3) we infer that $(\hat{U}(\hat{p},\alpha))$, is an $\hat{p} \in S$ ordinary neighborhood system in S. (QS4) implies (NC) and therewith the first assertion follows from Proposition 0.1. In view of Proposition 0.2 the second assertion is obvious.

1.3 Proposition: $(\hat{S}, \hat{\Delta})$ is a one-point ultra-fuzzy quasi-compactification of (S, Δ) .

<u>Proof:</u> To prove that $(\hat{S}, \hat{\Delta}_0)$ is quasi-compact let U be an ultrafilter on \hat{S} . Assume that U is not $\hat{\Delta}_0$ -convergent to some peS, let α be an element of]0,1[and let \hat{U} be a $\hat{\Delta}_0$ -neighborhood of ω . Then for some $A \in P(S)$, $\beta \in]\alpha,1[$ we have $\int_{\hat{S}} A \subseteq \hat{U}$ and $H_{\beta}(A) \in \Gamma$. Since $H_0(A) \subseteq H_{\beta}(A)$ this implies $\int_{\hat{S}} H_0(A) \in U$. Now we infer that U is convergent to ω .

1.4 Remark: If Δ is topologically generated by $\hat{\tau}$ then $\hat{\Delta}$ is topologically generated by the Alexandroff-quasi-compactification of $\hat{\tau}$ (cf. [7]).

2. One-point ultra-fuzzy compectifications

- 2.1 Proposition: The following conditions are equivalent:
- (i) (S,Δ) possesses a one-point ultra-fuzzy compactification
- (iii) $\forall A \in \Gamma$ $\exists \alpha \in]0,1[$ so that $H_{\alpha}(A) \in \Gamma$

<u>Proof:</u> (i)=>(ii): Let $(\tilde{S},\overset{\sim}{\Delta})$ be a one-point ultra-fuzzy compactification of $(S,\underline{\Delta})$, where $\tilde{S}=\tilde{S}\cup\{\overset{\sim}{\omega}\}$.

In particular, we may assume that (S,Δ_0) is the Alexandroff-compactification of (S,Δ_0) .

Choose A= Γ . Then $U:=\{\widetilde{\omega}\}_U \widehat{\bigcup}_S A$ is a $\widetilde{\Delta}_0$ -neighborhood of $\widetilde{\omega}$ and we can find $\alpha \in]0,1[$ so that U is a $\widetilde{\Delta}_{\alpha}$ -neighborhood of $\widetilde{\omega}$.

Let V be a $\tilde{\Delta}_{\alpha}$ -neighborhood of $\tilde{\omega}$ so that U is a $\tilde{\Delta}_{\alpha}$ -neighborhood of q

for every q in V. Since V is a $\tilde{\Delta}_0$ -neighborhood of $\tilde{\omega}$ we can find B in Γ so that $\{\tilde{\omega}\}\cup \hat{\mathbb{Q}}_S B \subseteq V$. Now we obtain $H_{\alpha}(A) \subseteq B$, i.e. $H_{\alpha}(A) \subseteq \Gamma$. (ii)=>(i): For the one-point ultra-fuzzy quasi-compactification $(\hat{S},\hat{\Delta})$ of (S,Δ) we have: $\hat{\mathbb{Q}}(\omega,0)=\{\hat{\mathbb{Q}}\in P(\hat{S})\mid A\subseteq \Gamma: \{\omega\}\cup \hat{\mathbb{Q}}_S A\subseteq \hat{\mathbb{Q}}\};$ i.e. $(\hat{S},\hat{\Delta}_0)$ is the Alexandroff-compactification of (S,Δ_0) .

An example of a fuzzy neighborhood space not possessing a one-point ultra-fuzzy compactification:

2.2 Example: Let R denote the set of real numbers and for every $\alpha \in]0,1[$ define $H_{\alpha}:P(R) \rightarrow P(R)$ according to:

$$A \in P(R): H_{\alpha}(A):= \begin{cases} \emptyset, & \text{if } A=\emptyset \\ A \cup [\frac{1}{\alpha}, \infty[, \text{ otherwise}] \end{cases}$$

Then $(H_{\alpha})_{\alpha \in]0,1[}$ fulfills the condition (CC) and thus defines in view of Proposition 0.1 a fuzzy neighborhood space (S,Δ) . (S,Δ) possesses a locally compact 1-topology but no one-point ultrafuzzy compactification.

References

- [1] W. Flüshöh: On the representation of fuzzy neighborhood spaces, Comm. IFSA Math. Chapter Vol. 2 (1988) 14-19.
- [2] T.E. Gantner, R.C. Steinlage and R.H. Warren: Compactness in fuzzy topological spaces, J. Math. Anal. Appl. 62 (1978) 547-562.
- [3] U. Höhle: Probabilistisch kompakte L-unscharfe Mengen, manuscripta math. 26 (1979) 331-347.
- [4] U. Höhle: Probabilistic topologies induced by L-fuzzy uniformities, manuscripta math. 38 (1982) 289-323.
- [5] R. Lowen: Fuzzy neighborhood spaces, Fuzzy Sets and Systems 7 (1982) 165-189.
- [6] R. Lowen: A comparison of different compactness notions in fuzzy topological spaces,
 - J. Math. Anal. Appl. 64 (1978) 446-454.
- [7] H. Schubert: Topologie, Teubner 1964.