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ABSTRACT : This paper uses hyperscales as a basis for hyperdominance anatysis and
employs the normalized possibilistic measure of nonspecificity proposed by Higashi
and Klir in [14 ] to sssess the inter-fuzzy subsets overall discrepancy. Also, it
introduces object evaluation via what the author cells somewhel objective fuzzy

appreciations ( SOFAs ) .
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1-INTRODUCTION

Let's assume the giving of a descriptor set. when it comes to
objectively appreciating various objects belonging to a given object
universe using the aggregation operators developed in fuzzy set literature,
one is to face up, inevitably, with the serious problem of choosing the
appropriate aggregation function . In fact, whatever aggregation function
one decides to use, it reflects, undoubtedly, some psychological traits of
the decision maker's or analyst's personality : optimism, pessimism or any
sort of involvement in the choice process of the very relationship in
question between the descriptors . Consequently, a kind of fuzziness stems
from the ambiguity surrounding the determination of the right aggregation
function, an ambiguity felt in some circumstances and brought about by a
serious desire of making rather objective appreciations of objects . That
is, appreciations that need not refiect the decision maker's or analyst's
personality, hence one may be puzzied over the appropriate aggregation
function to use . Thus, in order to define different hyperrelations ( genera-
lized binary relations ) of dominance [ 1 ] in a collection of fuzzy subsets,
we suggest herein the usage of a very specific type of fuzzy appreciations
that take into account a continuum of values obtained by various individual
aggregation functions considered separately . Besides, we motivate the
usage of the normalized possibilistic measure of nonspecificity proposed
by Higashi and Klir [ 14 ] to assess the inter-subsets overall discrepancy
when using a hyperscale as a basis for hyperdominance . Throughout this
paper, @will denote an object sample set taken from an object universe U
finite or not, € a collection of fuzzy subsets of @1, and D a descriptor set .
In [ 20 ] we have aiready mentioned that once given an object by descriptor
nonfuzzy data matrix, it was possible to obtain a metric information



matrix called texture matrix according to table 1, below . X = ¥ px(d)/d

ded
will, then denote the fuzzy profile of an object X relative to a given
texture matrix .

TABLE 1
 Desoripir_ Anchor value retio scalt | intervel scaling |
Benefit indicator Maximum ux(d) = ‘e uy(d) = a-’:*:g:
d'. dl*-j !
Cost. indicator Minimum u(d =565 | uxlo= 9“*-@5
Y
Coombe' ideel value ux(d)=(%[%cﬂ * 5(%])

MLE. : d(x) expresees the score of an object X with respect to a descriptor d, d** (resp. d*)
stands for meximum (resp. minimum ) of the scores attained by the various objects and d, is the
Coombs' ideel value for descriptor d[ 26, pp.159,1601 .

2 - HYPERSCALE-BASED HYPERDOMINANCE

With a view to defining hyperrelations of dominance on the
collection €, we first need to define appreciation functions of the form :
aX)=1(a,X) (1)
where f is a function combining the components of the descriptors
importance vector A with the fuzzy profile elements of object X. It is
possible to define f in various ways .

2.1- SMMBLE-VALVED APPRECIATIONS

2.1.1- METRIC-BASED APPRECIATIONS
IT A is a probabilistic weighting vector ( i.e., A4 2 0 and 2 Ag = 1) then,
ded
Eq.( 2) defines a family of metric-based appreciations ;

1

fX)=1- 2"5l IREVOR L LT PIes (2)
ded

and it follows that for all X € @ and all p € [ 1, + o [, the appreciations
ap(X) satisfy the following properties :
1) 0 < ap(X) < 1; and
i) ap(X)2ap(Y)IfTX2Y.

It is to be noted that the probabilistic weighting vector A may be
transformed Into a normatized possibilistic weighting vector m( ie., Iy 2 0



and lf,'f’",,nfl)bymeansof!iq.(3):Ild=‘Enmin( A, Ag) (3)

(see [ 13,19 ], also see [ 2, pp.169 1), so another type of metric-based
appreciations a(X) given by Eq. ( 4) may be considered .

X)=1- (1 - ux(d) (4)
a(x) ﬁueg[ ux(d) A Mgl

2.1.2-FUZZY SET AGGREGATION CONNECTIVE BASED APPRECIATIONS

In fuzzy set literature, several fuzzy set aggregation connectives :
triangular (colnorms, averaging operators, compensatory operators and
self-dual operators are surveyed [12,15,16] Details of n-ary and
probabilistically or possibilistically weighted generalizations of some of

these operators may be found in[ 2 ] . Examples of these generalizations
are shown in table2, below .

TABLE 2
|_Aggregation function n- lization weighted generalization
(X1+x2-1)v 0 [x1+x2+...+xn-in—1)iv0 n(pyxq+..4ppXn)-(n-1)Iv0
X1.X2 X1.X2...Xp X1MP1..xp"Pn
X1 A X2 min( X{,X2,..., Xp ) [xqv(1-m)) ALA Dxpv (1-mp )]
(x1+x2)/2 (X1 +X2+..+%g )/n P1X1*POX2* ...+ PXn
X{ VX2 max( X1,X2,..., Xp ) Ixy Amqlv.vixg A mgl
X1+X2 = X{. X2 1- (1-x).01- x2)..(1- %) 1-(1-x1)"P1..(1-xp )"Pn
| g Wg(xp)+g(x2)) g~ 1(g(x1)+..+g(xp)) g~ 1(nlp1g(x1)+...+pp g{xp)1)

N.B: g is an additive generator of an archimedean aggregation operator.

The aggregation functions may be chosen on the basis of a relationship
between the descriptors involved i.e.,, competitiveness and compensation
as shown in table 3, below ([ 23 ], also see [ 26, pp. 324, 325 1) or on the
basis of some psychological traits of the decision maker's personality,
namely, a characteristic optimism ( pessimism) degree [ 17 ] See Eq.(5).

(0= > Ag. (ug@)®1 /s (5)
ded

where s is a characteristic optimism index . By varying s, various
aggregation operators are obtained . For instance, If s - - oo, we get the

min-operator, the lowest values are, thus, dominant, this corresponds to a

pessimistic aggregation. If s » + =, we get the max-operator,the highest

values are, thus, dominant, this corresponds to an optimistic aggregation .
In [ 17 ], transformations are suggested to make the characteristic
optimism index take on its values in the valuation set [0,1].



TABLE 3

Descriptors relationship reciation formula
competitive and noncompensatory X)= nm’ py(d)

itive and X)= L d
competitive and compensatory o(X) denux()
noncompetitive and noncompensatory aX) = %gux(d)
noncompet itive and compensatory a(X) = - py(d)

N.B : 1 stands either for product operator:a L b=a.b or bold

intersection operator : a L b = max(0, a+b-1) and » stands either for the

bold union operator : axb = min(1, a+b) or the probabilistic sum operator :
axb = a+b-ab .

2.1.3- OWA-OPERATOR BASED APPRECIATIONS

IfD={d, dy, .., dy ] is the descriptor set and R is an OWA operator
with weighting vector W[ 24 ], the appreciation a(X) will be stated as :
a(X) =R(ey,..., ep) (6)

where ej = H( ux(dy), Ag; ) . I by denotes the kth largest element in the bag

k=n

<eq, ... ep>, then a(X) will be:a(X) = 3 by.Wy (7)
k=1

In [ 24 ] Yager suggested inter alia the following form of the function H :

ej = HO py(dy), Agy ) = (Agy v p ). [ ugtdy) X Agy v a) (8)
where g is the degree of orness associated with W and p its complement,

{=n
l.e, p*q=1and q=[;£7] 2 (n-D.W (9)
=1

2.1.4- FUZZY INTEGRAL BASED APPRECIATIONS

Following wierzchon [ 22 ] in his interpretation of Sugeno's fuzzy
integral [ 21 ], we will be able to evaluate any given object X, as follows :
we will let px(d) express the grade of satisfaction provided by object X, if

descriptor d is considered, then, if E is a subset of D, the best security

grade of satisfaction provided by object X will be : S(E) = " Hx(d) and in

view of the transformation mentioned before, the possibilistic importance
measure of the descriptor subset E will be given by w(E) = :?)s( Iy . The

value v(X) given by : v(X) = e [ S(E) A W(E) ] (10)
C



is known as the best pessimistic evaluation, whereas, the worst

optimistic evaluation will be : r(X) = Eminn [ s(E) v w(E) ] (1)
Cc
In[ 10, pp. 138,139 ], the formula ( 10) is stated as:
max
V(X) = g Min [ ux(d), g ] (12)
and according to Wierzchon [ 22 ] the formula (11 ) can be rewritten into :
X)= - 3
r(X) = v(x) + | px(d;,) lg}goml (13)
provided that the ux(dj)s are decreasingly ordered and dj, 1S such that :
v(X) = A 14
(X) = ux(diy) 1%0 (14)

2.1.5- HYPERSCALE FORMULATION

At this point, we are capable of assigning to each fuzzy subset
B=3 ug(X)/X, belonging to the collection €, a discrete fuzzy subset

A) = 3 ug(X)/a(X) of the unit interval [0,1] . Consequently, the ranking of

the different fuzzy subsets belonging to € boils down, to a ranking of the
corresponding discrete fuzzy subsets A() of [0,1]. A hyperscale ¥ ( scalar

function ) may be used so as to rank these fuzzy subsets. Indeed, IT F is an
ordering function of fuzzy subsets of [ 0,1 ][ 3, 25 ], we will set :

(D) =F[ A®)] (15)
2.2~ SOMEWHAT OBJECTIVE FUZZY APPRECIATIONS ( SOFAs)

in real-world situations, the human aggregation schemes result in
appreciations which lie in between pessimistic appreciations and
optimistic ones. Moreover, these appreciations are neither totally
pessimistic nor totally optimistic [ 27 ] . Inspired from these empirical

findings we will employ the following basic result in order to make the
definition and usage of SOF As possible .

BASIC RESULT : Let Px(X) be the pessimistic appreciation of an
object X, P*(X) its best pessimistic appreciation, Ox(X) its

worst optimistic appreciation and O0%(X) its optimistic
appreciation, then the following inequalities hoild :
Pa(X) < P¥(X) < 0x(X) < O%(X) (16)

The values Pax(X) and O%(X) will be referred to as the extreme
appreciations, and P¥*(X) and Ox(X) as the intermediate ones . It is to be

stressed that the normalized possibilistic weighting vector Il used in the
calculus of P*(X) and Osx(X) involved in the formulation of the various



SOF As, resuits rrom' the transtormation of the tnformational probabilistic
weighting vector &, representing the descriptors entropy-based weights of
importance calculated on the basis of a given texture matrix . That is,

I (17)
where e(d) is the entropy measure of descriptor d contrast intensity and £
is the total entropy ( i.e, E = Je(d) ). See [ 26, pp.188,189 ] . Hereafter,

ded
we introduce the main types of SOFAs, precisely, interval-valued SOFAs,
fuzzy interval-valued SOF As and m-flou set-valued SOFAs (m =2).

2.2.1- INTERVAil': VALUED SOFAs
Let 8= 2 gi/X; be a fuzzy subset belonging to €, to each object X
i=1

belonging to supp8 it is possible to assign, an interval-valued SOFA :

a(X) = [ Pa(X), 0O%¥(X) ] (18)
if the two extreme appreciations are considered or alternatively :
a(x) = [ P¥(X), 03(X) ] (19)

if the intermediate ones are considered .
Once given the different interval-valued SOFAs of the various objects

belonging to supp®, we start by transforming the possibilistic vector of

membership grades into a probabilistic vector by means of Eq.(20) i.e., we
J o=k

set pj equal to: py= 2 w (20)
J=i

where 11y,..,7x and Tig+ | = 0, are the normalized and decreasingly ordered

membership grades gj for i=1,..k ([ 13,19], also see [ 2, pp. 168]). If F is

an ordering function of fuzzy subsets of [0,1], the hyperscaie ¥ will be
defined by :

Y(B)=F([ 2 pi.PelXp), Z pj.0%xXp1) (21)
1gigk 1<igk
if the two extreme appreciations are involved or alternatively by :
!(!)=F([‘_§( pi.P*(Xi),HXk Pi. Ox(X{) 1) (22)
4l gig

if the two intermediate ones are involved . The result for each fuzzy

subset 8 is an interval of the form: A(8) = [ L(®), U®) ], and it is possible
to rank the fuzzy subsets according to their evaluations using Ponsard's
linear ordering defined on the set of intervals of [0,1] ( [18], also see [10,
pp. 65 1) or using the hyperscale ¥ .

2.2.2- FUZZY -INTERVAL-VALUED SOFAs

For each object X, the values Px(X), P¥(X), 0x(X) and 0%(X) may
be used as characteristic points of a fuzzy interval when using Buckley's



notation [ 4], that is, [ Px(X), O%(X) ] will be the fuzzy interval's carrier
and [ P¥(X), 0x(X) ] its core . See figure. F .
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Figure. F

Thus we can assign to each object X a fuzzy interval-valued SOFA defined

by : A(X) = ( Pae(X) /7 P¥(X), Ox(X) / O%¥(X) ) (23)

then we can obtain a fuzzy evaluation of each fuzzy subset 8 by using a
linear aggregation scheme [ 9] or a level 2 fuzzy set reduction ( [ 5,9 ] see
also [ 10, pp. 62,63 1.

2.2.2.1- LINEAR AGOREOATION SCHEME

Once given the different fuzzy interval-valued SOFAs of the various
objects belonging to the fuzzy subset B, we transform the possibilistic
vector of membership grades into a probabilistic vector p . The hyperscale
¥ will, then, be defined by Eq. ( 24):

v =F( T piP»x(Xj)/ Z P¥(X{), Z pi0x(Xi)/ Z pi0*(Xi))) (24)
1gigk PPl mskm 1 1gigk Pt Isiskpi |

where F is, once more an ordering function . The result for each fuzzy
subset of the collection € is a fuzzy interval, and the fuzzy subsets couid
be ranked according to their evaluations using necessity or possibility
measures [ 11 ], maximizing set and minimizing set [ 7 ], fuzzy relations

[ 8], level comparison based fast method [ 6 ],..., or the hyperscale ¥ .

2.2.2.2 - LEVEL 2 FUZZY SET REDUCTION

Let ¢ be the cardinality of collection €, kj the cardinality of the
support of fuzzy subset nj and gj; the membership grade of X; in nj then

using level 2 fuzzy set reduction we state : A(#y ) = ml;lkj 91j. (X)) (25)
or using membership grades

(vt el0,11): pa( B Xt) = ‘rggs [ 95 Haxpt) ] (26)
The hyperscale ¥ will , then, be defined by : ¥( !Ij )=F(A( !j )] (27)



2.2.3- m-FLOU SET-YALUED SOFAs

Taking once more the basic result into consideration, we can define
for each object X belonging to 8, an m-flou set-valued SOFA (m = 2)

A(X) = ([P%(X), 02(X) ], [ Px(X), 0%(X) ]) (28)

Once given the different m-flou set-valued SOFAs of the varfous
objects,the fuzzy evaluation of each fuzzy subset 8 will be :

AB=([ Z piP*Xj), X pjOx(Xi)Ll Z pjPx(Xi), T pjO*Xj)](29)
151k 151k 15k 15i<k

The result for each fuzzy subset B is an m-flou set ( with m=2):
A = ([LBLU®D L, [L'(®), U@ 1) with[LO),U® I c [L'®), U'®) ] The
different fuzzy subsets could be ranked as follows :

B2BaL@®UM I<[LEUSB) land [L'@®,U®m <[ L@ Um)]
where < 1s Ponsard's linear ordering defined on the set of intervals of [0,1]

DEFINITIONS 2.1

Let B, 8' and B be fuzzy subsets belonging to € and ¥ any

hyperscale defined in the foregoing sections, then a hyperrelation of
dominance D can be defined in€by :

B DB o ¥WH)2¥H) (30)
Furthermore, we say that :

1°)Bis hyperdominant & VI €C,Bj=8 : ¥(B)>¥( ;)
2°)Bis hyperdominated & VB €C, B =B: ¥(B) <¥( )

2.3 - INTER-SUBSETS OVERALL DISCREPANCY EVALUATION

The normalized possibilistic measure 0 of non-specificity proposed
by Higashi and Klir will be employed to evaluate the inter-subsets overall
discrepancy . Let ®@= (@1, @2, .., ®; ) be the appreciation set of the ¢ fuzzy
subsets corresponding to a given hyperscale and let 1(®) = { 11y, 12,..,7¢ J,
with 1§ > mi+q for i=1,.,, ¢ and 7ic+] = 0, be the set of normalized and
decreasingly ordered evaluations of the c fuzzy subsets, in this case we

1 i=c
state: {lm@) = I (- mi+1) log2(d) (31)

log2(c) &

and if we define a function D by : D(®) = 1- Ot (32)

then, given the properties of ﬁ D satisfies the following straightforward
properties :
NOosDPI< T

2) D is invariant with respect to permutations of the evaluations ;




3) D does not change if we add null evaluations ,

4) If (@) < 1(@"), then D(®') < D(®),

9) Maximum : D(®) = 1, If all the evaluations are null except one,
6) Minimum : D(®) = 0, if all the evaluations are equal .

Thus, D can be used as inter-subsets overall discrepancy indicator of the
fuzzy subsets evaluations distribution .

CONCLUDING REMARK

It is possible to apply inter alia the methodology exposed in the
present paper to interregional muiltidimensional discrepancy analysis if
the data matrix is chosen to be a multiregional welfare matrix, the object
sample set @ is chosen to be a system of regions and € a collection of
fuzzy clusters of regions obtained by means of any suitable Q-technique .
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