# SOME REMARKS ON THE TOPOLOGICAL PROPERTIES OF FUZZY NUMBERS IN R<sup>n</sup> #

#### L. GERGO

Computer Centre of Eötvös Loránd University,
1117 Budapest, Bogdánfy u. 10/b

Abstract: The space of normal, upper semicontinuous, fuzzy convex and compactly supported fuzzy numbers in  $\mathbb{R}^n$  are considered endowed with different metrics generated by the Hausdorff metric. A subspace is introduced and properties of the metrics restricted to the subspace are investigated.

Keywords: fuzzy numbers, metric space, Hausdorff metric, equivalence of metrics, product of fuzzy numbers

### 1.Introduction

Many authors ( see for example:Kaleva [1],[2],[3] Diamond,Kloeden [4]; Puri,Ralescu [5],[6]; Goetschel,Woxman [7]) deal with the convenient metric space of normal, upper semicontinuous, fuzzy convex and compactly supported fuzzy numbers in  $\mathbb{R}^n$ . So it is important to know more about this space endowed with different metrics. We will show that the metrics on the set of fuzzy numbers defined in  $\mathbb{R}^n$  are equivalent to those which we get as a product of metrics on the set of fuzzy numbers in  $\mathbb{R}$ .

#### 2.Notations

Denote  $E^n$  the set of all normal (i.e. there exists  $t_o \in \mathbb{R}^n$  such that  $x(t_o)=1)$ , fuzzy convex, upper semicontinuous and compactly

<sup>#</sup> supported by the Hungarian Young Scholars' Fund No.400-0113

supported fuzzy numbers in  $\, R^{n} \,$  , where fuzzy convex means that for the function  $x \colon \! R^{n} \, \to \, I$ 

$$x(\alpha t+(1-\alpha)s) \ge \min\{x(t),x(s)\}$$

holds for each  $t,s \in supp(x)$ .

Define the metric D<sub>n</sub> by the equation

$$D_n(x,y) = \sup_{\alpha \in I} d_n([x]^{\alpha},[y]^{\alpha})$$

where I denotes the closed interval [0,1],  $\mathrm{d_n} \ \, \text{is the Hausdorff metric in} \ \, P_{\mathbb{K}}(\mathbb{R}^n) \, ,$ 

 $d_n(K,L) = \max\{\sup_{\mathbf{x} \in K} \rho(\mathbf{x},L), \sup_{\mathbf{y} \in L} \rho(K,\mathbf{y})\} \text{ , where } \rho(\mathbf{x},L) \text{ denotes the } \\ \rho-\text{distance of the point } \mathbf{x} \text{ and the subset } L \text{ in } \mathbb{R}^n \text{ .}$ 

 $[x]^{\alpha} = \{t \in \mathbb{R}^n \mid x(t) \ge \alpha \}$  for  $0 \le \alpha \le 1$ , the  $\alpha$ -level set of x.

 $[x]^{O}$  denotes the support of x.

It is known that the  $\alpha$ -level sets of x are nonempty convex compact subsets of  $R^n$  and the space  $(E^n,D)$  is a complete metric space.

# 3. Equivalence of Hausdorff metrics

For a fixed metric  $\rho$  we can give an equivalent definition for the Hausdorff metric  $d_n$  in  $P_K(\mathbb{R}^n)$  (see [7])

$$d_n(K,L) := \inf \epsilon_n(K,L)$$

where  $\varepsilon_{\rho}(K,L) = \{ \varepsilon>0 : K\subset (L)_{\varepsilon}^{\rho} \text{ and } L\subset (K)_{\varepsilon}^{\rho} \}$ . Here  $(L)_{\varepsilon}^{\rho}$  denotes the parallel domain of the set L with respect to the metric  $\rho$  that is

$$(L)_{\varepsilon}^{\rho} = \{ \mathbf{x} \in \mathbb{R}^{n} : \rho(\mathbf{x}, L) \leq \varepsilon \}$$

Let us consider the metric spaces  $(\mathbb{R}^n,\rho)$  and  $(\mathbb{R}^n,\rho')$ . Suppose that there exist positive constants  $c_1,c_2$  such that

$$c_1 \rho' \leq \rho \leq c_2 \rho'$$

Question: what can we say about the two corresponding Hausdorff metrics d and d'.

Lemma 3.1 For the metrics  $\,\rho\,$  and  $\,\rho\,'\,$  given as above and for each  $K\!\in\! P_K^{}({\mathbb R}^{\rm n})\,$  the following holds

$$\left[K\right]_{\varepsilon/c_{2}}^{\rho'} \subset \left[K\right]_{\varepsilon}^{\rho} \subset \left[K\right]_{\varepsilon/c_{1}}^{\rho'}$$

**Proof** It follows at once from the equvivalence of the metrics and the definition of  $(K)_E^{\rho}$  .

Lemma 3.2 For given metrics  $\rho$  and  $\rho$ ' in  $P_K(\mathbb{R}^n)$  the Hausdorff metrics d and d'belonging to them , respectively , fulfil the inequalities

$$c_1 d' \leq d \leq c_2 d'$$

that is the Hausdorff metrics in  $P_{K}(\mathbb{R}^{n})$  are equivalent.

Proof

$$\varepsilon \ge d(K, L) \Rightarrow \varepsilon \in \varepsilon_{\rho}(K, L) \Rightarrow K \subset (L)_{\varepsilon}^{\rho} \text{ and } L \subset (K)_{\varepsilon}^{\rho}$$

by the Lemma 3.1 we obtain that

$$\mathbb{K}\subset \left[L\right]_{\varepsilon/c_1}^{\rho'}$$
 and  $\mathbb{L}\subset \left[\mathbb{K}\right]_{\varepsilon/c_1}^{\rho'}$   $\Rightarrow$   $\frac{\varepsilon}{c_1}\in \varepsilon_{\rho'}, (\mathbb{K}, \mathbb{L})$   $\Rightarrow$   $\frac{\varepsilon}{c_1}\geq d'(\mathbb{K}, \mathbb{L})$ 

$$\Rightarrow \epsilon \ge c_1 \cdot d'(K,L)$$
 that is  $d(K,L) \ge c_1 \cdot d'(K,L)$ .

Conversely

$$\varepsilon \ge d'(K,L) \Rightarrow \varepsilon \in \varepsilon_{\rho}, (K,L) \Rightarrow K \subset (L)_{\varepsilon}^{\rho'} \text{ and } L \subset (K)_{\varepsilon}^{\rho'}$$

by the Lemma 3.1 we obtain that

$$\begin{split} \mathsf{K} &\subset \left( \mathsf{L} \right)_{\varepsilon \in 2}^{\rho} \quad \text{and} \quad \mathsf{L} &\subset \left( \mathsf{K} \right)_{\varepsilon \in 2}^{\rho} \quad \Rightarrow \quad \varepsilon \cdot \mathsf{c}_{2} \in \varepsilon_{\rho}(\mathsf{K}, \mathsf{L}) \quad \Rightarrow \quad \varepsilon \cdot \mathsf{c}_{2} \geq \mathsf{d}(\mathsf{K}, \mathsf{L}) \\ &\Rightarrow \quad \varepsilon \geq \frac{1}{\mathsf{c}_{2}} \; \mathsf{d}(\mathsf{K}, \mathsf{L}) \quad \Rightarrow \quad \mathsf{c}_{2} \cdot \mathsf{d}'(\mathsf{K}, \mathsf{L}) \geq \mathsf{d}(\mathsf{K}, \mathsf{L}) \end{split}$$

**Definition 3.1.** The product  $x=x_1\times x_2\times \ldots \times x_n$  of the fuzzy numbers  $x_1,x_2,\ldots,x_n\in E^1$  is the following element of  $E^n$ .

$$x(t) = \min \{x_1(t_1), x_2(t_2), \dots, x_n(t_n)\}$$
 for each  $t \in \mathbb{R}^n$ .

Denote  $s^n$  the subset of  $E^n$  with the definition

$$s^n := \{x_1 \times x_2 \times ... \times x_n \in \mathbb{E}^n : x_i \in \mathbb{E}^1 \text{ for each } 1 \le i \le n\}$$

## Lemma 3.3. For each $x \in s^n$

$$[x]^{\alpha} = [x_1]^{\alpha} \times [x_2]^{\alpha} \times ... \times [x_n]^{\alpha}$$

Proof

$$t \in [x]^{\alpha} \Leftrightarrow x(t) \ge \alpha \Leftrightarrow \min \{x_1(t_1), x_2(t_2), \dots, x_n(t_n)\} \ge \alpha$$

 $\Leftrightarrow x_i(t_i) \ge \alpha$  for each  $1 \le i \le n$   $\Leftrightarrow t_i \in [x_i]^{\alpha}$  for each  $1 \le i \le n$ 

$$\Leftrightarrow \qquad \mathsf{t} \in [\mathsf{x}_1]^{\alpha} \times [\mathsf{x}_2]^{\alpha} \times \ldots \times [\mathsf{x}_n]^{\alpha}$$

4. Restriction of the metrics  $\mathbf{D}_n$  and  $\mathbf{D}_n^p$  to the subspace  $\mathbf{\delta}^n$ 

In this paragraph we are interested in the question: what will happen if we restrict the metrics defined in the space  $E^n$  to the subspace  $\mathcal{E}^n$  which consists of the product-form elements of  $E^n$ .

Now we fix the Hausdorff metric  $d_n$  which is defined by the maximum metric in  $\mathbb{R}^n$ . If we consider the subset of the n-dimensional compact cubes in  $\mathbb{R}^n$  we have the following simple relation for the paralel domain of a cube.

$$(\mathbf{I}^{\mathbf{n}})_{\rho} = (\mathbf{I}_{1})_{\rho} \times (\mathbf{I}_{2})_{\rho} \times \dots \times (\mathbf{I}_{\mathbf{n}})_{\rho}$$

where  $I^n = I_1 \times I_2 \times ... \times I_n$ .

Of course, if we used another metric in  $\mathbb{R}^{n}$  , the formula above would not hold.

**Theorem 4.1.** For each n-dimensional cubes  $I^n, J^n \in P_K(\mathbb{R}^n)$  we have the following

(i) 
$$d_n(I^n, J^n) = \max_{1 \le k \le n} d_1(I_k, J_k)$$

$$(ii) \qquad \frac{1}{n} \cdot \sum_{k=1}^{n} d_1(I_k, J_k) \leq d_n(I^n, J^n) \leq \sum_{k=1}^{n} d_1(I_k, J_k)$$

Proof It is enough to prove part (i) because part (ii) is
a straightforward consequence of (i).

For an arbitrary positive number  $\rho$ ,  $\rho \ge \max_{1 \le k \le n} d_1(I_k, J_k)$  if and only if  $\rho \ge d_1(I_k, J_k)$  for each  $1 \le k \le n$ . By the definition of the Hausdorff metric it is equivalent to the fact that

$$(I_k)\subset (J_k)_{\rho}$$
 and  $(J_k)\subset (I_k)_{\rho}$  for  $k\in\{1,2,\ldots,n\}$ 

Using formula (\*)

$$I^n \subset (J^n)_\rho$$
 and  $J^n \subset (I^n)_\rho$ 

that is

$$\rho {\geq} \mathbf{d_n}(\mathtt{I}^n,\mathtt{J}^n)$$

This means that

$$\rho \geq \max_{1 \leq k \leq n} d_1(I_k, J_k) \qquad \text{if and only if} \qquad \rho \geq d_n(I^n, J^n)$$
 this completes the proof.

**Theorem 4.2.** For each  $x,y \in \delta^n$ ,

(i) 
$$D_n(x,y) = \max_{1 \le k \le n} D_1(x_k, y_k)$$

í

(ii) 
$$k_1 \cdot \begin{bmatrix} \sum_{k=1}^{n} (D_1(x_k, y_k))^p \end{bmatrix}^{\frac{1}{p}} \le D_n^p(x, y) \le k_2 \cdot \begin{bmatrix} \sum_{k=1}^{n} (D_1(x_k, y_k))^p \end{bmatrix}^{\frac{1}{p}}$$

for some positive constants k1,k2.

Proof

(i) 
$$D_n(x,y) = \sup_{\alpha \in I} d_n([x]^{\alpha},[y]^{\alpha}) = \sup_{\alpha \in I} \max_{1 \le k \le n} d_1([x_k]^{\alpha},[y_k]^{\alpha}) =$$

$$= \max_{1 \le k \le n} \sup_{\alpha \in I} d_1([x_k]^{\alpha}, [y_k]^{\alpha}) = \max_{1 \le k \le n} D_1(x_k, y_k)$$

(ii) 
$$D_n^p(x,y) = \left[ \int_{x} (d_n([x]^\alpha, [y]^\alpha))^p d\alpha \right]^{\frac{1}{p}} =$$

$$= \left(\int_{\Gamma} \left(\max_{1 \le k \le n} d_1([x_k]^{\alpha}, [y_k]^{\alpha})\right)^p d\alpha\right)^{\frac{1}{p}} \le \left(\int_{\Gamma} \left(c_2 \cdot \sum_{k=1}^n d_1([x_k]^{\alpha}, [y_k]^{\alpha})\right)^p d\alpha\right)^{\frac{1}{p}}$$

$$\leq \left[\int_{\Gamma} \left(c_{2}^{p} \cdot n^{n-1} \cdot \sum_{k=1}^{n} d_{1}([x_{k}]^{\alpha}, [y_{k}]^{\alpha})\right)^{p}\right]^{\frac{1}{p}} =$$

$$= c_2 \cdot \sqrt[p]{n^{n-1}} \left[ \int_{1}^{\infty} \sum_{k=1}^{n} (d_1([x_k]^{\alpha}, [y_k]^{\alpha}))^{p} d\alpha \right]^{\frac{1}{p}} =$$

$$= c_2 \cdot \sqrt[p]{n^{n-1}} \left[ \sum_{k=1}^n \int_{\Gamma} (d_1([x_k]^{\alpha}, [y_k]^{\alpha}))^p d\alpha \right]^{\frac{1}{p}} =$$

$$= c_2 \cdot \sqrt[p]{n^{n-1}} \left[ \sum_{k=1}^{n} (D_1(x_k, y_k))^p \right]^{\frac{1}{p}}$$

The other side of the inequalities can be obtained in the same way. This theorem shows the interesting fact that the restrictions of the metrics  $\mathbf{D}_n$  and  $\mathbf{D}_n^p$  result in these product metrics.

## References

- [1] O.Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems 24 (1987) 301-317
- [2] O.Kaleva, On the convergence of fuzzy sets, Fuzzy Sets and Systems 17 (1985) 53-65
- [3] O.Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems 12(1984) 215-229

- [4] P.Diamond and P.Kloeden, Characterization of compact subsets of fuzzy sets, Fuzzy Sets and Systems 29(1989) 341-348
- [5] M.L.Puri and D.A.Ralescu, The concept of normality for fuzzy random variables, Ann. Probab. 13(1985) 1373-1379
- [6] R.Goetshel, Jr. and W. Woxman, Topological properties of fuzzy numbers, Fuzzy Sets and Systems 10(1983) 87-99
- [7] K. Leichtweiβ, Konvexe Mengen, VEB Deutscher Verlag der Wissenschaften, Berlin 1980