SOME EXTENSIONS OF NGUYEN'S THEOREM*

Robert FULLER and Tibor KERESZTFALVI

Computer Center, Loránd Eötvös University H-1502 Budapest 112, P.O.Box 157, Hungary

The goal of this paper to generalize certain results of Nguyen [1] (concerning the α -cuts of two-place functions defined by the Zadeh's extension principle) to context of extended two-place functions defined via a sup-t-norm convolution.

Keywords: Extension principle, triangular-norm

1. Introduction

In this paper, generalizing Nguyen's theorem, we give a necessary and sufficient condition for obtaining the equality

$$[f(A,B)]_{\alpha} = \bigcup_{T(\xi,\eta) \ge \alpha} f(A_{\xi},B_{\eta}) \qquad \alpha \in (0,1]$$
 (*)

where $f: X \times Y \to Z$, T is a t-norm, A and B are fuzzy subsets of X and Y, respectively, f(A,B) is defined via sup-T-norm convolution, A_{α} and B_{α} are the α -level sets of A and B, respectively, and $[f(A,B)]_{\alpha}$ is the α -level set of f(A,B).

Furthermore, we shall define a class of fuzzy subsets in which this equality holds for all upper semicontinuous (u.s.c.) T and continuous f.

It should be noted that in the special case $T(x,y)=min\{x,y\}$, the equation (*) yields

$$[f(A,B)]_{\alpha} = f(A_{\alpha},B_{\alpha})$$
 $\alpha \in (0,1]$

which coincides with Nguyen's result.

^{*}This work was in part sponsored by the Hungarian Young Scholar's Fund 400-0113.

2. Definitions

The symbol $\mathfrak{F}(X)$ denotes the family of all fuzzy subsets of a set X. Let X be a topological space and denote by $\mathfrak{F}(X,\mathfrak{X})$ the set of all fuzzy subsets of X having u.s.c., compactly-supported membership function.

The support of a fuzzy set $A \in \mathcal{F}(X)$ is defined by

suppA =
$$cl\{x \in X \mid A(x) > 0\}$$
.

where $cl\{x\in X\mid A(x)>0\}$ denotes the closure of $\{x\in X\mid A(x)>0\}$.

An α -level set of a fuzzy set $A \in \mathcal{F}(X)$ is defined by

$$A_{\alpha} := \begin{cases} \{t \in X \mid A(t) \ge \alpha\} & \text{if } \alpha \in (0,1] \\ \text{supp} A & \text{if } \alpha = 0 \end{cases}$$

A function $T:[0,1]\times[0,1]\to[0,1]$ is said to be triangular norm (t-norm for short) iff T is symmetric, associative, non-decreasing and T(a,1)=a for each $a\in[0,1]$.

Recall that if T a t-norm, $f:X\times Y\to Z$, $A\in \mathcal{F}(X)$ and $B\in \mathcal{F}(Y)$ then the fuzzy set $f(A,B)\in \mathcal{F}(Z)$ is defined via the extension principle by

$$f(A,B)(z) = \sup_{f(x,y)=z} T(A(x),B(y)),$$
 $z\in Z.$

3. The results

In this section we generalize Proposition 3.3 and Proposition 5.1 [1] to α -cuts of the extended two-place functions defined via a sup-t-norm convolution.

The following theorem illustrates that if instead of min-norm in Zadeh's extension principle we use an arbitrary t-norm, then obtain results similar to those of Nguyen.

Theorem 1. Let $X\neq\emptyset$, $Y\neq\emptyset$, $Z\neq\emptyset$ be sets and let T be a t-norm. If $f: X\times Y \to Z$ is a two-place function and $A\in \mathcal{F}(X)$, $B\in \mathcal{F}(Y)$, then a necessary and sufficient condition for the equality:

$$[f(A,B)]_{\alpha} = \bigcup_{T(\xi,\eta) \geq \alpha} f(A_{\xi},B_{\eta}), \qquad \alpha \in (0,1)$$

is: for each $z \in \mathbb{Z}$, $\sup_{f(x,y)=z} T(A(x),B(y))$ is attained.

The following theorem shows that the equality (*) holds for all u.s.c. T and continuous f in the class of u.s.c and compactly-supported fuzzy subsets.

Theorem 2. If $f:X\times Y\to Z$ is continuous and the t-norm T is u.s.c., then

$$[f(A,B)]_{\alpha} = \bigcup_{T(\xi,\eta) \geq \alpha} f(A_{\xi},B_{\eta}), \qquad \alpha \in (0,1]$$

holds for each $A \in \mathcal{F}(X, X)$ and $B \in \mathcal{F}(Y, X)$.

The following examples illustrate that the α -cuts of the fuzzy set f(A,B) can be generated in a simple way supposing that the t-norm in question has a simple form.

Example 1. It is easy to verify that if T(x,y)=min(x,y), then the equation (*) can be reduced to the well known form:

$$[f(A,B)]_{\alpha} = f(A_{\alpha},B_{\alpha})$$
 $\alpha \in (0,1]$

which coincides with Nguyen's result.

Example 2. If $T(x,y)=T_w(x,y)$, where

$$T_{w}(x,y) = \begin{cases} x & \text{if } y=1 \\ y & \text{if } x=1 \\ 0 & \text{else} \end{cases}$$

is the weak t-norm, then the equation (*) turns into

$$[f(A,B)]_{\alpha} = f(A_1,B_{\alpha})Uf(A_{\alpha},B_1)$$
 $\alpha \in (0,1],$

hence $T_w(\xi,\eta)\geq\alpha>0$ holds only if $\xi=1$ or $\eta=1$. Thus if $A_1=\emptyset$ or $B_1=\emptyset$, then $[f(A,B)]_{\alpha}=\emptyset$ \forall $\alpha\in(0,1]$. If there exist unique x_0 and y_0 such that $A(x_0)=B(y_0)=1$, then we obtain

$$[f(A,B)]_{\alpha} = f(x_0,B_{\alpha})Uf(A_{\alpha},y_0)$$
 $\alpha \in (0,1].$

Example 3. If $T(x,y)=x\cdot y$, then the equation (*) yields

$$[f(A,B)]_{\alpha} = \bigcup_{\xi \in [\alpha,1]} f(A_{\xi}, B_{\alpha/\xi}) \qquad \alpha \in (0,1].$$

Example 4. If $T(x,y)=\max\{0,x+y-1\}$, then

$$[f(A,B)]_{\alpha} = \bigcup_{\xi \in [\alpha,1]} f(A_{\xi}, B_{\alpha+1-\xi}) \qquad \alpha \in (0,1].$$

Reference

[1] Nguyen, H.T. A Note on the Extension Principle for Fuzzy Sets, J. Math. Anal. Appl., 64(1978) 369-380.