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Abstract: In this paper, a biimplication operator “©7 is
defined on totally ordered complete lattice L. On L and the
set of L -fuzzy matrices, we discuss some basic properties of
operator “e© 7, obtain some solutions of fuzzy relation equation
AX=A(X A=A) and fuzzy relatoin unegual equation
A XsA(X A<A) respectively. A sufficient and necessary
condition of a L-fuzzy matrix having generalized subinverse

and the generalized inverses of idempotent matrices are given.
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1. Preparation

(1. 2] show that operator “a” (i.e. “—")is important on studying
fuzzy relation equation and generalized subinverse. In this paper, a
biimplication operator "7 1is defined on lattice L, and we will
discuss some basic properties of the operator “©” on lattice L and
the set of L -fuzzy matrices. In the following, let L be a totally
ordered complete lattice, 0, 1 denote the least element and greatest
element of L respectively. L"*" denotes the set of all of the nxm
fuzzy matrices, AT is the transposed matrix of A, I, is n-order
identity matrix. In this paper, we need some concepts of the
following.

Definition 1.1. Let a, bel, define



1 if asb
a—>b=
b if a>b
and a<-b=b—a.

Definition 1.2. Let A=(a;;)€ L™, B=(bi;)€ L™*", define

A B=(V(aicAbes))axn. And for any CeLr*®, let C°=,, C'=C
c?*C'.C,.--, Cm=C™-'.C. If there exists a popitive interger Kk,
such that C*=C**' then we say C 1is convergence of power.
Definition 1.3. Let A€ L™, if there exists B€ L™*", such that
A -B-A=A, then A 1is called regular, in this case, B is called a
generalized inverse of A. If A-B-ASA, then B 1is called a genera-
lized subinverse of A.

Definition 1.4. et BelL""™ be an L-fuzzy symmetric square
matrix, if there exists A€ L"*™, such that B=A-AT, then B is
called realizable. _

Definition 15. lLet A=(a;;)e L, if iiZzaikVagi, 151, ksn,

then A is called a diagonally dominant matrix.

2. Biimplication Operator “e”
Definition 2.1. Let a, be L, define aeb=(as=b)A (a—b), that Iis,
b if a>b
aeb= (1] if a=b
a if a<b.
Easily to see aeb=bea
Proposition 2.1. Let a, b, ce L, then (aec)A(bec)saeb
Proof. (1) If c#a, b, then (aec)A(bec)=aAbAcfaAbfaeb.

(2) 1f c=a, but c#b, then (aec)A(bec)=bec=bea=aeb.
(3) If c#a, but c=b, similarly with (2), the conclusion holds.

(4) If a=b=c, the conclusion holds obviously.

Proposition 2.2. Let a, be L, then aA (aeb)sb.
Proof. Since
b if a>b
aN (aeb)= (a if a=b

a if a<b,



then aA (aeb)<b.

Proposition 2.3. Let a, b, ce L, then
(i) (aAb)ec=[(b—c)A (aec)]V [(ac=c)A (bec)];
(ii) (avVb)ec={(aec)A (b—c)]V [{a—=c)A (bec)].

Proof. (i) Easily to see (aAb)<c=(as<c)A (bec),
(aAb)—c=(a—=c)V (b—c).
(aAb)ec=[(aAb)<—c]A [{aAb)—c]
=[(a=c)A (b—=c)]A [(a—c)V (b—c)]
=(a=c)A{[(bc)A (a—=c)]V [{(b=c)A (b—=c)]}
=(a=c)A{[(bec)A (a—c)]V (bec)}
=[(acc)A (be=c)A (a—c)]V [(a<c)A (bec)]
=[(aec)A (b=c)]V [(a—c)A (boc)]
[(b=c)A (aec)]V [(a<=c)A (bec)].

Similarly, we can verify (ii).

Proposition 2.4. Let a, b, c€ L, then

(i) (aoc) A (bec)s(aAb)eci(asc)V (bec);

(i1) (aec)A (bec)s(avb)eci(aec)V (bec).
Proof. In the following, we only examine (i), (ii) can
similarly.

(1) If a>b, then

(aec)Ac if blc c
{(a®c)A (beoc)= { C if b=c (aAb)ec=bec=(1
(ae»c)A b if b<c, b
(2) [f a=b, then

c if b>c

(aoc)A (boc)= { 1 if b=c

b if b<c

=(aAb)ec

(3) If a<b, then
(bec)Ac if a>c c
(aec)A (boc)= : c if a=c (aAb)ec=(1
aA (bec) if a<c, a
Through compared with, we can see for any a, b, c€ L,
(aec)A (boc)s{aAb)ec. By Proposition 2.3 (i),

(aAb)ec=[{(bec)A (aec)]V [(a—c)A (bec)ls(aec)V (bec).

be proved

if b>c
if b=c
if b<e.

if a>c
if a=c
if a<ec.



Therefore, (aec)A (boc)s(aAb)ecs(asc)V (bec).

From Proposition 2.3, 2.4, we can see, generally, for any a, b,
ce€ L, (aAb)ec=(aec)A(bec) and (aVb)ec=(aec)V (berc) are not
satisfied. But the following propositions show, under some conditions,

they hold vyet.

Theorem 25. Let a, b, ce L, if aAb#c, then
(1) (aAnb)ec=(aec)A (bec);
(i1) (aVb)ec={(aec)V (bec).

Proof. (1) [f aAb>c, then (aAb)ec=c, while

(ae@c)A (bec)=cAc=c. If aAb<le, then adc or b<c. Suppose a<c, thus

a if bdc
(aAb)ec=(aAb)= {a if b=c
aAb if b<c,
a if b>c
(aoc)A (bec)=aA (bec)= { a if b=c
alNb if b<c,

hence (aAb)ec=(aec)A (bec)

(ii) Since aA b#c, then suppose atc, if b=c, then a<c=b, in this
case, (aVb)ec=bec=1l, (aec)V (bec)=(aec)V1=1, hence (ii) holds.
If a=b, then, obvious, (aVb)ec=(aec)V (bec). By the way, we only
need to prove, when a#b, b#c, c#a, (ii) holds, too, then (ii) has been
proved. In fact, when a#b, b#c, c#a, there only exsit six cases amo-ng
a, b, ¢, ie. a>b>c, a>c>b, bdcra, bla’c, c>a>b, c¢>b>a. For any cases,
we can examine (ii) holds. '

Proposition 26. Let a, b, c€ L, and c#1, then
(aAb)ec=(aec)A (bec). if and only if one of ‘the following
condition holds.

(i) when a>b, b#c

(ii) when a<b, a%c¢;

(iii) when a=b.
Proof. I[f a#b, then when a>b, certainly b#c, otherwise,

(aAb)ec=bec=1, (aec)A (bec)=cA l=c, but ctl, contradiction.



Similarly, when a<b, we have a#c. Conversely, (1) when a=b, the
conclusion is obvious. (2) when a>b, since b#c, hence aAb=b#c; when
a<b, since a#c, hence aAb=a#c, in a word, aAb#c, by Theorem 2.5 (i),
we can verify the conclusion.
Proposition 2.7. Let a, b, c€ l, and c#1, then
(aVb)ec=(aec)V (bec). if and only if one of the following condi-
tions holds.

(1) when a>b, b#c;

(ii) when a<b, atc;

(iii) when a=b.
Proof. If a#b, then when a>b, certainly b#c, otherwise,
(aVv b)<—>c=a4->é=c, (aec)V (bec)=cV 1=1, but ctl, contradiction.
Similarly, when a<b, we have a#c. Conversely, (1) when a=b, then the
conclusion 1is obvious. (2) when a>b, since b#c, thus aA b=b#c; when
a<b, since a#c, hence aAb=a#c, in a word, aAb#c, by Theorem 2.5(ii),
the conclusion holds.

Now we discuss the biimplication operator on L -fuzzy matrices.
Definition 2.2. Let A=(a;;)e L™ B=(b;;)e Lmx", define
A=B=(A (aic=be))ase. A= B=(A (aic=bxs))axn,

Ao B=(A<B)A(A—B).

According to the definition, A<->B=(k7:\l(aik<->bk,-))nxn, Remark,

generally Ao B*Be A, For example, let L=[0, 1],
(0.2 0.3) (0.7 0.8)

A= B=
0.4 05/, 0.1 0.6/,

then we have ’

0.1 0.2 0.2 0.3\ .
Ae B= Be A=
0.1 0.4/, but 0.1 0.1/.
Proposition 2.8. For any Ae€e L"*®, then (1) A—AT2I,;
(2) A< AT2l.; (B)(A—AT) AZA |
Proof. (1) Let A=(ai;)nxm, thus A—*AT:(I(/:\l(aikHa“))nxn, since

k‘/:"{i(aik“)aik)zl, 1€i¢n, hence A—’ATZI.,; (2) see [2], (3) can be

verified at once by right multiplying A on two sides of (1).



Theorem 2.9. Let A€ L®**™, then
(1) A©® AT is a reflexive matrix (ie. Ae AT21.):
(2)  Ae© AT is a symmetric matrix;
(3) Ae AT is a idempotent matrix;
(4) Ae AT is a power convergent matrix;
(5) Ae AT is a diagonally dominant matrix;
(6) Ae AT is realizable.
Proof. (1) From Proposition 2.8, A AT=(A<AT)A(A—AT)
2l A Ta=14, i.e. Ae AT2],.

(2)  AOAT=(@1)axn® (a0) Texa=(A (@10 a1x))ara,
let A©® AT=(ri;)axn, then ri,=k7=\l(aik9ajk)=k/§1(aJk<—>a“‘)=rJ‘,
1€1, jsn, hence A AT=(Ae AT)T,

(3)  (A®AT) (A6 AT)=(A(aixoas))axa (A @ik as0) ) axo

=(V (A (aixear))A (A (aroas)])axs

=(V [A (@i an) A (aseoand)]) e
By Proposition 2.1.

(aix@arnd) A (aseear)faivoass, 1sksm,  1¢i,j,f<n.
Therefore

(A6 AT) - (A6 AT)S(V [A (aicoasc)]))an

=(A(aix®aix))axs=AOAT
On the other hand

(Ao AT)- (A6 AT)=(V [A ((aiear)A (@scean))Daxe

2(A ((aix@a ) A (a0 a54)) ) axn

=(A (@10 a;))axa=A 0 AT
Consequently (Ao AT)?=Ae AT,

(4) can be got at once by (3).

(5) can be obtained at once by (1).

(6) can be verified immediately by (2), (3).

Remark. In general, for any A€L"", Ae A+tA For example,
let  L=[0, 1]. |
/63 0.1 0.7
A=l0.8 0.2 0.6
06 05 04/,



then

0.1 0.1 01
AeA=102 01 0.2
03 0.1 057,

easily to see Ae A+A. But we have conclusions of the following:
Proposition 2.10. I[f A=(ai;)e L"*" is a weakly reflexive matrix
(i.e. for 1<€i, jsn, ai;€a:i;), for i#f or j#k, a;;?arx, then

Ao ASA

Proof. Since A A=(k/n__}l(aik<~>akj))nxn. hence

n
N laikeag)faie®ai;faiAa=ass,  1£i,jsn. Therefore Ao AsSA

Proposition 2.11. For any A€ LlLr~*" if A is a reflexive matrix,
then

(1) (ATo A)SA;

(2) (Ao AT)SA.
Proof. (1) Since Az2l,, hence a;;=1, 15i¢n. As a result,

ATH A:(/n\ (akieakj))nxng((aiiHaij))nxn:(ai.i)nxn:A; le
k=1
ATe ASA.

(2) can be verified by the same reason.

Proposition 2.12. For any AelL™"™, if a;;#0, 1£i¢n, 1&¢jsm, then
Ae [,=04xn (the nxm zero matrix).
Proof. Since AHIm:(k/El(aikGSU))nm, where

1 it i=j

0 otherwise.

Hence k/"{(aik(‘)akj):(aileé\lj)/\"'/\(aina_jj)/\"'/\(aimﬁam.i):
=1

OAOA - AOA(a; ;0 6 55)AN0AN - - A0=0, 1%i¢n, 1<£jS¢m. Hence

Ao l,=0ixn.

Proposition 2.13. For any A€ L ®"*" then

(1) (Ae AT)-A=A;

(2) A-(ATe A)=A.
Proof. We prove (1) only, (2) can be verified similarly. Let
(A AT) - A=(rij)oxm, then

(ri.i)nxm:(k/:\\l<aik(_’ajk))nxn'(ai.i)nxm



=(

f

[}"\ ((aiv®ar)Nac;)])oxnm

1 k=1

1 <<s

thus

1k=1

= k/nil((aik"’alk)/\au)]v,"'V [jl:\l((aik"’aik)/\au)] :
Voo VIA ((aix®anc)Aany)], 1<i<n, 1<j<m.

ri.i:\:/ [/"{ ((aixear)ANar;))
[

Once more, by Proposition 2.2, for any h#i,
k/_\l((aixﬁahk)/\ahj)§(ai,~<-+ah3)/\ahj§a”, 1s£i, hsn, 1§J§m
Yet k/:{l((aikHaak)/\ai,-)i}":\la”:a”, lélén, 1§J§m Therefore

(Ao A7) A=A

3. Application on Fuzzy Relation Equation

In this section, the solutions of fuzzy relation unequal equation
and fuzzy relation equation are discussed by using properties of
biimplication operator, we obtain some results. In following, suppose
X is a fuzzy unknown square matrix such that A-X(X-A) having
meaning.

By Proposition 2.8 (3), the following proposition holds.

Proposition 3.1. For any AelL®*™, X-A2A always has a solution
A— AT,
Proposition 3.2. If A=(a;;)€ L**®* is a idempotent matrix and for

i+f or Jj*k, aij#*arx, 181, Jj, f, k&n. Then A -XSA(X-A<A) always

has a solution Ae A,

Proof. Since AZ2=A, then (k\i/l(aik/\akj))nxnz(aij)nxn; hence
aiﬁk\:/l(aik/\akJ)=(a“/\a”)\/---V(a“/\a”)v---V(ai.,/\a.,,-).

Since for i#f or Jj#k, a;jtaswx, 1%i,j,fkén.

Therefore, certainly
a;;=(aiiANar;)V---Vi{aiiNai;)V - VV(aianAan;)=aiiANaissai,

1€i, Jsn, that 1is, A is a weakly reflexive matrix. By Proposition

2.10, Ao A<SA, hence A-(Ae A)SA-A=AZ%=A. Consequently,

A-X<A, always has a solution Ae A, By the same reason, we can

prove X -ASA always has a solution Ae A also.



Lemma 3.3. Let B=(b;;)€ L"*", n22, and bi;sb;;, 1£i, jSn, then
BsB?<. .. <Br-!'=Br=...

The proof can be found in [3].
Corollary 3.4. For any A=(a;;)€e L=, if A satisfies for i#f ‘or
J#K, ais*ary, 181, j, f, k&n, then a sufficient and necessary condi-
tion that A 1is a idempotent matrix is that A is a weakly reflexive
matrix and AZSA.
Proof. From the proving process of Proposition 3.2, we know if
A?=A, then A is a weakly vreflexive matrix, AZ%¢A naturally.
Conversely, since A is a weakly reflexive matrix, by Lemma 3.3,
ASA?. Yet AZ$A, hence AZ=A.
Proposition 35. For any Ae€el»*™, A-X=A, X-A=A has solution

ATe A, Ae AT, respectively.

Proof. This can be examined directly by Proposition 2.13.
Proposition 3.6. For any A €L"*", then the following conditions
are equivalent:

(1) A is a transitive matrix;

(2) A- (Ao AT) ASA;
(3) A-(ATe A) ASA.
Proof. We only verify (1)& (2).

(1)=(2). If AZ2<A, by Proposition 2.13,
A (A AT) A=A - [(AeAT) - Al=A - A=A2%LA, ‘that is, (2) holds.

(2)=(1). If (2) holds, ie. A -(Ae AT) A<A, yet
(A AT)- A=A, hence A-A<€A, that 1is, (1) holds.
Proposition 3.7. For any Ae€lL®** if AZ%=A, then both AeAT

and ATe A are generalized inverse of A.

Proof. By Proposition 2.13, (Ao A7) A=A, A-(ATe A)=A,
hence A-(Ae AT) A=AZ=A, A-(ATeo A) A=A - A=A?=A, that is,
A- (A AT) - A=A, A-(ATe A) A=A
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