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Abstract

In this paper, we proposed a new concept of interval-value
L-fuzzy set and, defined its three basic operations. In
addition,we presented so—called [, \2]-cutset and,discussed
its basic properties. As the main resuits of this paper,
we established a number of decomposition theorems for
interval-value L-fuzzy sets.

Heywords :@: Interval-value L-fuzzy set, complete lattice,
[, A2]-cutset, upper(lower)-L-fuzzy set, decomposition
theorem for interval-value L-fuzzy sets.

1. Introduction

At present interval-value fuzzy sets (for fixed x¢ X, x) is a closed
interval contaimed in the interval [0,1]) have been applied to some fields,
such as comtroller,signal transmission,approximete inference, etc.(seel1-41).
In this peper, replacing [0,1] by the gemreral lattice L, we have presented
the concept of interval-value L-fuzzy sets and, discussed their three basic
operations. In additiom, we have generalized the i—cutset for fuzzy sets
(A€ [0,1]) to [Af,Az2l-cutset for L-fuzzy sets ([1;,X2] is a closed
interval contained in the lattice L) end, discussed its main properties.
Basing on them, ve established wang decomposition theorems for
interval-value L-fuzzy sets. Each of them is a generalization for the
decompesition theorem of fuzzy sets.



2. Preliminaries

Throughout this paeper, X always denotes a crisp set and p(X) power set
of X. In this paper, (L,<,V,A) always, unless specifically stated,
denotes a complete lattice, and 0 and 1 its smallest and greatest elements
respectively.

Defimition 2.1 Let ’': L—-L be a map, we call it an order-reversing
involution on L, if the following two conditions hold:

® (a’)'=a , a€L ;

@ If a<b then b’<a’ , a,b{L.

We will denote by L* all L-fuzzy sets [5] on X and, by U, N, ¢ their
operations of union, intersection and complement respectively, where for
A€ L, A%(x)=A(x)’, xEX.

Definition 2.2 A lattice (L,<) is called dense, if for arbitrary a,
pEL and ¢ <p (i.e. a< pand a £ p), there exists some A¢ L such that
a <A <p.

It is not difficult to prove the following proposition.

Proposition 2.1 Let L be a complete dense lattice. Then we have

p=V{a€L:ia<p) , p=A{a€L: p<al.

3. Comstructiom of I(L)

Definition 3.1 Let a, b¢ L and a<b, then
[a,bl={A¢ L: a< A <b} _
is called an (closed) interval.

We will demote by I(L) all intervals on L.It must be pointed out
LcI(L), because for any a¢ L, a=[a,al¢ I(L). '

Defimition 3.2 For [a,,b )€ I(L), t€T.
Y R L T AL S

w f/E\T [lt, bt]S[fIG\T at, {\(Tht],,

® [a¢, byl'=(b; , a} 1.
Definitiem 3.3 For [a; ,b;1¢ I(L), i=1,2.
W [&’ ’ b']"[‘z, bz] if a,= as and b|= bz,



@ [a,, byI< [a,,by] if [a,, b;1V [a,, byl=[a,, b1,

® [a,, bjI<la,, by1 if [a,, b, I< [a,, b,]1 and [a,,b, 1# [a,,b,].

Without perticular difficult we can prove the following proposition.

Proposition 3.1 Let a;, b; €L, i=1,2, and ”’” as Definition 3.2(3) .
Then

M [a,,b;1< f[a,,by] iff a,< a, and b;< b,.

@ ”’” is an order-reversing invelution on I(L).

From Definition 3.2 we see that operations V , A, ’ on.intervals are
fully transformed into corresponding operations V, A, ' on end points of
these intervals,thus the operational rules in (L,<,V ,A,’) are fully
suitable for (I(L),<,V ,A,’) and as a result we get

Theorem 3.1 (I(L),<,V,A,’) is a complete lattice with an
order—reversing involution ” ’”, its smallest and greatest elements are
[01=[0,0] and [11}=[1,1] respectively.

4. Intervel-value L-fuzzy set and its upper(lower)L-fuzzy sets

Pefinition 4.1 We call a map
A X- 1)
an interval-value L-fuzzy set (or IVL-fuzzy set). We wil denote by I(L)x all
IVL-fuzzy sets on X.

Remark 4.1 When L=[0,1], an IVL-fuzzy set is an interval-value fuzzy
set.If for any x¢€ X, A(x)¢€ LCI(L), then an IVL-fuzzy set is the general
L-fuzzy set.

Defimition 4.2 For A€ (L)', t€T.

1)) (tgr At)(")=t¥-|- A (x) . ® (tgr AL (x)= peTA’f(X) .

B AL(X)=(AL())’ . W Ai=As if A (x)=A (x) , s¢T.

® Arc= Ag if A(XISA4(x) , sET.

Theorea 4.1 (I(L)X,C,U ,N,c) is a complete lattice with an
order—-reversing involution "c”, its smallest and greatest elements are 0 and
1 respectively, where

ox)=106] , 10x)=[1]1 .

Proof. Straightforward.

Definition 4.3 For any A¢ I(L)*,suppose A(x)=[a~(x),a*(x)], x¢ X. We



call L-fuzzy sets
A x-L, Atx)=at(x), x¢X

and

A X-L , A(x)=a"(x) , x€X
upper and lower-L-fuzzy set of A respectively.
Theorem 4.2 Let Ay ¢ I(L)*, t¢ T, then
i = v += +
® (tGUT Ap) tLeJT Ay (tUeT Ay t%T At

- _ - -{»: 4
@ (th At) tQT At’ (th At) trlTAt'
€\~ _,abAC C\t_,a-+C
® (At) '(At) , (At) -(At) .
Proof . () For any x€ X, since
- - - +
(th At)(x) t\éTAt(X) t\é'T [At(X)’At(X)]

=L v
€

AL (x),
teT t

1 _ - +
hence () holds.

The proof for (and () is similar to ().
5. [1,,2]-catsets

Definition 5.1 Let A¢ I(L)", A,,A,(L. We call orderly
Apug) ~XEXE A AT MK ATO), A<y
A 4] =XE XD A< AT LKAT(), A< Ay
Apu,ag) =(REXD 4K A (O A AT, A< R,
Apg ) =XEXD M< A (O A< AF(x)), A< A2
[, y]-cutset, (A, Ax]l-cutset,[ A, A;)—cutset and (A, );)-cutset of A.
Now we will discuss the basic properties for cutsets. First recall
signs. For any A¢ X and «f L,
A {XE€ X:A(X)> a }, Ax ={x{ X! A(x) > a}.
Theorss 5.1 Let A,B¢ I(L)*. Then
() CAU B, 2,1 DAag 2] U Ba, 27 U (A, B3, N A%, DU (B N AN Bxg ).
@ (AU By, 3;) DA, 2p) U Beaag) U (B, N By N A7 DU (Boy N AL BXE).
@ (AN B, 2,7 =Ara, 4,1 N Biag, 2,11 &, N B, N &3 N B, N A5 N By .
® (AN By, 2y SAex, A" B, A N Ax By, N &3z N B3, N &Y, N B .

two



Proof. We prove only ().
We denote by E the right of () . For any x¢ X, we have
x€ E=>x€ Ay, ),] OF X€Bp,,3,] or x€ A3 N B, N &
or x¢ By N 812 nBx
=5 A <A< A< AT or A, <BT(x)< A< BY(x)
or L, <AT(X)< L<BHX) or A <KBT(x)< A< At(x)
=3 A, < A (x)V BT(x)< 1< AT (x)V BF(x)
= < (AU B)” ()< 1< (AU BYY (x) = x€ (AU By 2] -
Hence ()holds. The proof () — @) is similar to ().
Theorema 5.2 For any A€ I(L)x, we have
AA2) S ADA) SAR T A A S A k] SARALA]
proof. It is clear.
Theorem 5.3 Let A¢ I(LYX, [A,,h¢1€ I(L), t¢ T. Then

tenT Al hp] ™ At\e/-r[)\lf;)&t] . 5.

Proof. For any x¢ X, since
XCO AR A S VEET. x€ATA, A2
ESVLET , <A™ ()< A< aT(x)
- +
&= t\e/T A <A (X)<,2/€szt<5 (x)
= x¢ A[tYT)\'f ’%éf)‘zt]@xe AJC\G/TU\W,)\&] ’
hence (5.1) holds.

6. Decomposition theoreass

Definitiom 6.1 Let A€ I(L)X, (A, 2)¢ I(L). We provide [AI,AZ]A
€ 1LY* by
(LA, 2]A)(x)=D A1, A]A A(X) .
Specifically, if A€ P(X), then
(L), 2200 G=DA), R)A [xp(x), 3401,
where
(x)=1 ,x€A ,
0 ,x€A , 1,0¢L.
Propesition 6.1 Let [A),A;], [As,M1€ I(L), A,BE I(LY". Then
0 T, A20A € [As, AIA if [A,20< [25,24].

Xa

L



@ [M,}\zlA < [A,2,)B if A C B.
Proof. It is easy.
Decomposition Theorem I For any A¢ I(L)x, we have

= | LAy, A]A
Doddelly V2 Andel

Proof. For a arbitrary x¢ X, from

) = - t(x
0, otherwise,
we get
v [, A0]A (x)=_V (TALMIALX O, 1 X) ]
ety 1 AT 00T VMR DA Mg

=V {IAL ] AKATOK A ATG0)=[A7(x) AT (x) 1=A(x)
Corollary 6.1 For A,B¢ I(L)X, we have
A<B iff A(a, ), CB[)*I ] CYIA LA 1€ I(L);
A = B iff Ap,,3,1 = By ,ay) » VIA,ATEIWM).
Decomposition Theorem I Let L be a dense complete lattice and A€ I(L)
then

M A= LA, A0 00 3 @ A= (A, M1A ;
;\\‘;\ . 10 2218 (A1,22) Ul,)lz]él(l..)l 21800 2y
’ 2

LA, MIA D51
“ppdercy 22

Proof. To prove only ().
VY x€ X, we have

= (x
()\IU)\ [M,AZ]A()H,)Q) )(x) /\ < ([AI’AZ]A[XA A z)’xA ) D

A, A
)\I,Azél__\ )\I,'AZG'L\ & 2>
=V (LA, 2] A<A7 (< A<At¥=l _v | Ay, A.]
K®)>A A*«) Ay

=[A~(x),At(x)1  =A(x).
Hence () holds.
Decomposition Theorem N Let L be a dense complete lattice,A¢ I(L)X.
If the map
H: I(L)-P(x) [Ay, 2] > H(A )
satisfies the following condition

A(J\I)AZ> (-l H(A1!A2) [asy A[Ai))‘Z] .
then



A=_U LAy, RJHCA LAY (6.1
Aphalel L) !
Proof. For any [iy,23]1¢ I(L), from Proposition 6.1 we have
[M ’ AZ]A(.)Q;A2) < [}\‘ y }‘2]“( Al ’ }-2) < [Al N A2]A [j\' ’)\2].
It follows from Decomposition Theorem II () that
= i, A < Xi,A ALh) < Ay, A
A€l
=A.
So (6.1) holds.
Definition 6.2 Let A¢ L,A,B¢ P(x),ACB.We define A [A;Bl¢ I(L)x by
(A [A,BDD(x)=LA A xA(x),A A xB(x)] .
Decomposition Theorem IV For any A€I(L)x, we have
- A
- A .
Proof. Using the decomposition theorem of the general L-fuzzy sets, for

any x¢ X we have
- +
= A - , = A .
A (x) )k\éL\( A XA)\(X)) A (x) )\\éb( A xA1)-\(x))
It follows that

A (A ,Af - A AT ,AS - _(x), A
UM A GOm ) AL LA Y TR A e (0, A A 1 (0]

- _ =[A~ u =
[/\‘%/h(l/\xA)\(x),)}/6 (A/\)(A»X(x))] [A7(x) , AT(x)]=A(x%).

L
Remark 6.1 Decomposition Theorem IV shows that the decomposition of
IVL-fuzzy set can be got by decomposing its upper and lower—L-fuzzy sets.
Corollary 6.2 Let L be a dense complete lattice, A¢ I(L)x,then
O A= U A [ALAL]. @ A= U A [Ax,AR].
Nel” AT xely TN

- ¢t
3 A= Ala,, .

Decomposition Theorem V Let L be a dense complete lattice,A¢ I(L)*.If
the waps
Hi: L- P(x) Ab H;(» i-1,2
satisfy the following conditions
Ky CHD C Ay, Ay CHXND C af,



then

A=Y AMHD,HAN] (6.2)
el { 2

Proof. It is easy to see that

A Ay AKX 1A (D, HXDICA A AL, A6L.

By Decomposition Theorem IV and Corollary 6.2 () , we get

A= ALAS A< U A JHS (A A [A7 ,AT1 = A.
)\Léh (A5 A% )&Jq_\ [H, (0 ,H( )]C/\léb [ay ,Af1 = A

Thus (6.2) holds.
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