INTERVAL-VALUE L-FUZZY SET AND ITS DECOMPOSITION THEOREM

Meng Guangwu

Department of Mathematics, Liaocheng Teacher's College, Shandong 252000, P.R.China

Abstract

In this paper, we proposed a new concept of interval-value L-fuzzy set and, defined its three basic operations. In addition, we presented so-called $[\lambda_1,\lambda_2]$ -cutset and, discussed its basic properties. As the main results of this paper, we established a number of decomposition theorems for interval-value L-fuzzy sets.

Keywords: Interval-value L-fuzzy set, complete lattice, $[\lambda_1,\lambda_2]\text{-cutset}, \text{ upper(lower)-L-fuzzy set, decomposition}$ theorem for interval-value L-fuzzy sets.

1. Introduction

At present interval-value fuzzy sets (for fixed $x \in X$, $\mu(x)$ is a closed interval contained in the interval [0,1]) have been applied to some fields, such as controller, signal transmission, approximate inference, etc.(see[1-4]). In this paper, replacing [0,1] by the general lattice L, we have presented the concept of interval-value L-fuzzy sets and, discussed their three basic operations. In addition, we have generalized the λ -cutset for fuzzy sets $(\lambda \in [0,1])$ to $[\lambda_1, \lambda_2]$ -cutset for L-fuzzy sets $([\lambda_1, \lambda_2]]$ is a closed interval contained in the lattice L) and, discussed its main properties. Basing on them, we established mang decomposition theorems for interval-value L-fuzzy sets. Each of them is a generalization for the decomposition theorem of fuzzy sets.

2. Preliminaries

Throughout this paper, X always denotes a crisp set and p(X) power set of X. In this paper, (L, \leq, \vee, \wedge) always, unless specifically stated, denotes a complete lattice, and 0 and 1 its smallest and greatest elements respectively.

Definition 2.1 Let ': $L \rightarrow L$ be a map, we call it an order-reversing involution on L, if the following two conditions hold:

- (i) (a')'=a, a(L);
- (2) If $a \le b$ then $b' \le a'$, $a,b \in L$.

We will denote by L^X all L-fuzzy sets [5] on X and, by U, \cap , c their operations of union, intersection and complement respectively, where for $A \in L^X$, $A^C(x) = A(x)^2$, $x \in X$.

Definition 2.2 A lattice (L,<) is called dense, if for arbitrary α , $\beta \in L$ and $\alpha < \beta$ (i.e. $\alpha < \beta$ and $\alpha \neq \beta$), there exists some $\lambda \in L$ such that $\alpha < \lambda < \beta$.

It is not difficult to prove the following proposition.

Proposition 2.1 Let L be a complete dense lattice. Then we have $\beta = \bigvee \{\alpha \in L : \alpha < \beta \}$, $\beta = \bigwedge \{\alpha \in L : \beta < \alpha \}$.

3. Construction of I(L)

Definition 3.1 Let a, b(L and a < b, then

 $[a,b]=\{\lambda \in L: a < \lambda < b\}$

is called an (closed) interval.

We will denote by I(L) all intervals on L. It must be pointed out $L \subset I(L)$, because for any a(L, a=[a,a](I(L), b)

Definition 3.2 For $[a_t,b_t] \in I(L)$, $t \in T$.

(i)
$$\bigvee_{t \in T} [\mathbf{a}_t, \mathbf{b}_t] = [\bigvee_{t \in T} \mathbf{a}_t, \bigvee_{t \in T} \mathbf{b}_t],$$

(2)
$$\bigwedge_{t \in T} [\mathbf{a}_t, \mathbf{b}_t] = [\bigwedge_{t \in T} \mathbf{a}_t, \bigwedge_{t \in T} \mathbf{b}_t],$$

(3) $[a_t, b_t]' = [b_t', a_t']$.

Definition 3.3 For $[a_i,b_i]$ (I(L), i=1,2.

(1) $[a_1, b_1]=[a_2, b_2]$ if $a_1=a_2$ and $b_1=b_2$,

- (2) $[a_1, b_1] \le [a_2, b_2]$ if $[a_1, b_1] \lor [a_2, b_2] = [a_2, b_2]$,
- (3) $[a_1, b_1] < [a_2, b_2]$ if $[a_1, b_1] < [a_2, b_2]$ and $[a_1, b_1] \neq [a_2, b_2]$.

Without particular difficult we can prove the following proposition.

Preposition 3.1 Let a_i , b_i (L, i=1,2, and "'" as Definition 3.2(3) . Then

- (i) $[a_1, b_1] \le [a_2, b_2]$ iff $a_1 \le a_2$ and $b_1 \le b_2$.
- (2) "'" is an order-reversing involution on I(L).

From Definition 3.2 we see that operations \vee , \wedge , ' on intervals are fully transformed into corresponding operations \vee , \wedge , ' on end points of these intervals, thus the operational rules in $(L, <, \vee, \wedge, ')$ are fully suitable for $(I(L), <, \vee, \wedge, ')$ and as a result we get

Theorem 3.1 (I(L), \leq , \vee , \wedge ,') is a complete lattice with an order-reversing involution "'", its smallest and greatest elements are [0]=[0,0] and [1]=[1,1] respectively.

4. Interval-value L-fuzzy set and its upper(lower)L-fuzzy sets

Definition 4.1 We call a map

A:
$$X \rightarrow I(L)$$

an interval-value L-fuzzy set (or IVL-fuzzy set). We will denote by ${\rm I(L)}^{\rm X}$ all IVL-fuzzy sets on X.

Remark 4.1 When L=[0,1], an IVL-fuzzy set is an interval-value fuzzy set. If for any $x \in X$, $A(x) \in L \subset I(L)$, then an IVL-fuzzy set is the general L-fuzzy set.

Definition 4.2 For $A_t \in I(L)^X$, $t \in T$.

(i)
$$(\bigcup_{t\in T} A_t)(x) = \bigvee_{t\in T} A_t(x)$$
. (2) $(\bigcap_{t\in T} A_t)(x) = \bigwedge_{t\in T} A_t(x)$.

- (3) $A_t^c(x) = (A_t(x))^r$. (4) $A_t = A_s$ if $A_t(x) = A_s(x)$, $s \in T$.
- (5) $A_t \subset A_s$ if $A_t(x) \leq A_s(x)$, $s \in T$.

Theorem 4.1 $(I(L)^X,\subset,\cup,\cap,c)$ is a complete lattice with an order-reversing involution "c", its smallest and greatest elements are $\underline{0}$ and $\underline{1}$ respectively, where

$$Q(x)=[0]$$
, $\underline{1}(x)=[1]$.

Proof. Straightforward.

Definition 4.3 For any $A \in I(L)^X$, suppose $A(x)=[a^-(x),a^+(x)], x \in X$. We

call L-fuzzy sets

$$A^{\dagger}: X \rightarrow L. A^{\dagger}(x) = a^{\dagger}(x). x \in X$$

and

$$A^-: X \rightarrow L \cdot A^-(x) = a^-(x) \cdot x \in X$$

upper and lower-L-fuzzy set of A respectively.

Theorem 4.2 Let $A_t \in I(L)^X$, $t \in T$, then

(i)
$$\left(\bigcup_{t\in T} A_{t}\right)^{-} = \bigcup_{t\in T} A_{t}^{-}$$
, $\left(\bigcup_{t\in T} A_{t}\right)^{\dagger} = \bigcup_{t\in T} A_{t}^{\dagger}$.

(2)
$$\left(\bigcap_{t\in T} A_t\right)^- = \bigcap_{t\in T} A_t^-$$
, $\left(\bigcap_{t\in T} A_t\right)^{\dagger} = \bigcap_{t\in T} A_t^{\dagger}$.

(3)
$$(A_t^c)^- = (A_t^t)^c$$
, $(A_t^c)^\dagger = (A_t^-)^c$.

Proof . (1) For any $x \in X$, since

$$(\bigcup_{t \in T} A_t)(x) = \bigvee_{t \in T} A_t(x) = \bigvee_{t \in T} [A_t^{-}(x), A_t^{+}(x)]$$

$$= [\bigvee_{t \in T} A_t^-(x), \bigvee_{t \in T} A_t^+(x)] = [(\bigcup_{t \in T} A_t^-)(x), (\bigcup_{t \in T} A_t^+)(x)],$$

hence (1) holds.

The proof for (2) and (3) is similar to (1).

5. $[\lambda_1, \lambda_2]$ -cutsets

Definition 5.1 Let A(I(L)^X, λ_1, λ_2 (L. We call orderly

$$A_{[\lambda_1,\lambda_2]} = \{x \in X: \lambda_1 < A^-(x) < \lambda_2 < A^+(x)\}, \lambda_1 < \lambda_2$$

$$A_{\{\lambda_1,\lambda_2\}} = \{x \in X: \lambda_1 \leq A^-(x) \leq \lambda_2 \leq A^+(x)\}, \lambda_1 \leq \lambda_2$$

$$A_{\{\lambda_1,\lambda_2\}} = \{x \in X: \lambda_1 \leqslant A^-(x) \leqslant \lambda_2 \leqslant A^+(x)\}, \lambda_1 \leqslant \lambda_2$$

$$A_{(\lambda_1,\lambda_2)} = \{x \in X: \lambda_1 \leq A^-(x) \leq \lambda_2 \leq A^+(x)\}, \lambda_1 \leq \lambda_2$$

 $[\lambda_1, \lambda_2]$ -cutset, $(\lambda_1, \lambda_2]$ -cutset, $[\lambda_1, \lambda_2)$ -cutset and (λ_1, λ_2) -cutset of A.

Now we will discuss the basic properties for cutsets. First recall two signs. For any A(L^X and $\alpha(L)$,

 $A_{\alpha} = \{x \in X : A(x) > \alpha \}, A_{\alpha} = \{x \in X : A(x) > \alpha \}.$

Theorem 5.1 Let A,B(I(L)X. Then

$$\text{(i)} \quad (\mathsf{A} \cup \mathsf{B})_{\left[\lambda_1,\lambda_2\right]} \supset \mathsf{A}_{\left[\lambda_1,\lambda_2\right]} \cup \mathsf{B}_{\left[\lambda_1,\lambda_2\right]} \cup (\mathsf{A}_{\lambda_1}^- \cap \mathsf{B}_{\lambda_2}^+ \cap \mathsf{A}_{\lambda_2}^-) \cup (\mathsf{B}_{\lambda_1}^- \cap \mathsf{A}_{\lambda_2}^+ \cap \mathsf{B}_{\lambda_2}^-) \,.$$

(2)
$$(A \cup B)_{(\lambda_1,\lambda_2)} \supset A_{(\lambda_1,\lambda_2)} \cup B_{(\lambda_1,\lambda_2)} \cup (A_{\lambda_1}^- \cap B_{\lambda_2}^+ \cap A_{\lambda_2}^-) \cup (B_{\lambda_4}^- \cap A_{\lambda_2}^+ \cap B_{\lambda_2}^-).$$

(a)
$$(A \cap B)_{[\lambda_1,\lambda_2]} = A_{[\lambda_1,\lambda_2]} \cap B_{[\lambda_1,\lambda_2]} \cap A_{\lambda_1} \cap B_{\lambda_2}^+ \cap A_{\lambda_2}^- \cap B_{\lambda_1}^- \cap A_{\lambda_2}^+ \cap B_{\lambda_2}^{-c}$$
.

$$(4) \quad (A \cap B)_{(\lambda_1,\lambda_2)} \subset A_{(\lambda_1,\lambda_2)} \cap B_{(\lambda_1,\lambda_2)} \cap A_{\lambda_1}^{-} \cap B_{\lambda_2}^{+} \cap A_{\lambda_2}^{-c} \cap B_{\lambda_1}^{-} \cap A_{\lambda_2}^{+} \cap B_{\lambda_2}^{-c}.$$

Proof. We prove only (1).

We denote by E the right of (1). For any $x \in X$, we have $x \in E \Longrightarrow x \in A_{[\lambda_1, \lambda_2]}$ or $x \in B_{[\lambda_1, \lambda_2]}$ or $x \in A_{\lambda_1}^{-c} \cap B_{\lambda_2}^{+c} \cap A_{\lambda_2}^{-c}$ or $x \in B_{\lambda_1}^{-c} \cap B_{\lambda_2}^{+c} \cap B_{\lambda_2}^{-c}$

 $\Rightarrow \lambda_1 < A^-(x) < \lambda_2 < A^+(x)$ or $\lambda_1 < B^-(x) < \lambda_2 < B^+(x)$

or $\lambda_1 \le A^-(x) \le \lambda_2 \le B^+(x)$ or $\lambda_1 \le B^-(x) \le \lambda_2 \le A^+(x)$

 $\Rightarrow \lambda_1 \leq A^-(x) \vee B^-(x) \leq \lambda_2 \leq A^+(x) \vee B^+(x)$

 $\Rightarrow \lambda_1 < (A \cup B)^-(x) < \lambda_2 < (A \cup B)^+(x) \Rightarrow x \in (A \cup B)_{[\lambda_1, \lambda_2]}.$

Hence (1) holds. The proof (2) - (4) is similar to (1).

Theorem 5.2 For any A(I(L)X, we have

 $\begin{array}{l} A_{(\lambda_1,\lambda_2)} \subset A_{[\lambda_1,\lambda_2)} \subset A_{[\lambda_1,\lambda_2]} \,, \quad A_{(\lambda_1,\lambda_2)} \subset A_{(\lambda_1,\lambda_2)} \subset A_{[\lambda_1,\lambda_2]} \,. \\ \text{proof. It is clear.} \end{array}$

Theorem 5.3 Let $A \in I(L)^X$, $[\lambda_{it}, \lambda_{2t}] \in I(L)$, $t \in T$. Then

$$\prod_{t \in T} \mathbf{A}[\lambda_{|t}, \lambda_{2t}] = \mathbf{A} \bigvee_{t \in T} [\lambda_{|t}, \lambda_{2t}]$$
(5.1)

Proof. For any $x \in X$, since

$$\begin{array}{c} \mathbf{x} \in \bigcap_{t \in T} \mathbf{A}_{[\lambda_{1t}, \lambda_{2t}]} \iff \forall \ \mathbf{t} \in \mathbf{T}, \ \mathbf{x} \in \mathbf{A}_{[\lambda_{1t}, \lambda_{2t}]} \\ \iff \forall \ \mathbf{t} \in \mathbf{T}, \ \lambda_{1t} < \mathbf{A}^{-}(\mathbf{x}) < \lambda_{2t} < \mathbf{A}^{+}(\mathbf{x}) \\ \iff \bigvee_{t \in T} \lambda_{1t} < \mathbf{A}^{-}(\mathbf{x}) < \bigvee_{t \in T} \lambda_{2t} < \mathbf{A}^{+}(\mathbf{x}) \end{array}$$

 $\iff x \in A[\underset{t \in T}{\bigvee} \lambda_{|t}, \underset{t \in T}{\bigvee} \lambda_{2t}] \iff x \in A[\underset{t \in T}{\bigvee} (\lambda_{|t}, \lambda_{2t})],$ hence (5.1) holds.

6. Decomposition theorems

Definition 6.1 Let $A \in I(L)^X$, $[\lambda_1, \lambda_2] \in I(L)$. We provide $[\lambda_1, \lambda_2] A \in I(L)^X$ by

 $([\lambda_1, \lambda_2]A)(x)=[\lambda_1, \lambda_2] \wedge A(x).$

Specifically, if A(P(X), then

 $([\lambda_1, \lambda_2]A)(x)=[\lambda_1, \lambda_2] \wedge [\chi_A(x), \chi_A(x)],$

where

$$\chi_{A}(x) = 1$$
 , $x \in A$, 0 , $x \in A$, $1,0 \in L$.

Proposition 6.1 Let $[\lambda_1, \lambda_2]$, $[\lambda_3, \lambda_4] \in I(L)$, $A,B \in I(L)^X$. Then (i) $[\lambda_1, \lambda_2]A \subset [\lambda_3, \lambda_4]A$ if $[\lambda_1, \lambda_2] < [\lambda_3, \lambda_4]$.

(2) $[\lambda_1, \lambda_2]A \subset [\lambda_1, \lambda_2]B$ if $A \subset B$.

Proof. It is easy.

Decomposition Theorem I For any A $\in I(L)^X$, we have

$$\mathbf{A} = \bigcup_{[\lambda_1, \lambda_2] \in \mathbf{I}(\underline{\mathsf{L}})} [\lambda_1, \lambda_2] \mathbf{A}_{[\lambda_1, \lambda_2]}$$

Proof. For a arbitrary x (X, from

$$\chi_{A[\lambda_1,\lambda_2]}^{(x)} = 1, \lambda_1 \leq A^-(x) \leq \lambda_2 \leq A^+(x),$$
0, otherwise,

we get

$$(\bigcup_{[\lambda_1,\lambda_2]\in I(L)} [\lambda_1,\lambda_2]A_{[\lambda_1,\lambda_2]})(\mathbf{x}) = \bigvee_{[\lambda_1,\lambda_2]\in I(L)} ([\lambda_1,\lambda_2] \wedge [\chi_{[\lambda_1,\lambda_2]}^{(\chi)},\chi_{A[\lambda_1,\lambda_2]}^{(\chi)})$$

=
$$\forall \{[\lambda_1, \lambda_2]: \lambda_1 < A^-(x) < \lambda_2 < A^+(x)\} = [A^-(x), A^+(x)] = A(x)$$

Corollary 6.1 For A,B(I(L)X, we have

$$A \subseteq B \text{ iff } A_{[\lambda_1, \lambda_2]} \subseteq B_{[\lambda_1, \lambda_2]}$$
, $\forall [\lambda, \lambda] \in I(L)$;

A = B iff
$$A_{[\lambda_1, \lambda_2]} = B_{[\lambda_1, \lambda_2]}$$
, $\forall [\lambda, \lambda] \in I(L)$.

Decomposition Theorem II Let L be a dense complete lattice and A \in I(L), then

(i)
$$\mathbf{A} = \bigcup_{\substack{\lambda_1 < \lambda_2 \\ \lambda_1, \lambda_2 \in L}} [\lambda_1, \lambda_2] \mathbf{A}(\lambda_1, \lambda_2)$$
; (2) $\mathbf{A} = \bigcup_{\substack{[\lambda_1, \lambda_2] \in I(L)}} [\lambda_1, \lambda_2] \mathbf{A}[\lambda_1, \lambda_2]$;

(3)
$$A = \bigcup_{\{\lambda_1,\lambda_2\} \in I(L)} [\lambda_1,\lambda_2]A(\lambda_1,\lambda_2]$$

Proof. To prove only (1).

 $\forall x \in X$, we have

$$\begin{array}{l} (\bigcup\limits_{\substack{\lambda_{1}<\lambda_{2}\\\lambda_{1},\lambda_{2}\in L}} [\lambda_{1},\lambda_{2}]A_{(\lambda_{1},\lambda_{2})})(\mathbf{x}) = \bigvee\limits_{\substack{\lambda_{1}<\lambda_{2}\\\lambda_{1},\lambda_{2}\in L}} ([\lambda_{1},\lambda_{2}]\wedge [\chi_{A_{(\lambda_{1},\lambda_{2})}}^{(\chi)},\chi_{A_{(\lambda_{1},\lambda_{2})}}^{(\chi)}) \\ = \vee \{[\lambda_{1},\lambda_{2}]:\lambda_{1}\lambda_{1}} \lambda_{1},\bigvee\limits_{A^{+}(\mathbf{x})>\lambda_{2}} \lambda_{2}] \end{array}$$

$$=[A^{-}(x),A^{+}(x)]$$
 $=A(x).$

Hence (1) holds.

Decomposition Theorem I Let L be a dense complete lattice, $A \in I(L)^X$. If the map

H:
$$I(L) \rightarrow P(x)$$
 $[\lambda_1, \lambda_2] \mapsto H(\lambda_1, \lambda_2)$

satisfies the following condition

$$A_{(\lambda_1,\lambda_2)} \subset H(\lambda_1,\lambda_2) \subset A_{[\lambda_1,\lambda_2]}$$

then

$$\mathbf{A} = \bigcup_{[\lambda_1, \lambda_2] \in \mathbf{I}(\mathbf{L})} [\lambda_1, \lambda_2] \mathbf{H}(\lambda_1, \lambda_2). \tag{6.1}$$

Proof. For any $[\lambda_1, \lambda_2]$ (I(L), from Proposition 6.1 we have $[\lambda_1,\lambda_2]A_{(\lambda_1,\lambda_2)} \subset [\lambda_1,\lambda_2]H(\lambda_1,\lambda_2) \subset [\lambda_1,\lambda_2]A_{[\lambda_1,\lambda_2]}.$

It follows from Decomposition Theorem II (1) that

$$\mathbf{A} = \bigcup_{\substack{\lambda_1 < \lambda_2 \\ \lambda_1, \lambda_2 \in L}} [\lambda_1, \lambda_2] \mathbf{A}_{(\lambda_1, \lambda_2)} \subset \bigcup_{\substack{0 \le \lambda_1 \le \lambda_2 \le 1 \\ \lambda_1, \lambda_2 \in L}} [\lambda_1, \lambda_2] \mathbf{H}(\lambda_1, \lambda_2) \subset \bigcup_{\substack{0 \le \lambda_1 \le \lambda_2 \le 1 \\ \lambda_1, \lambda_2 \in L}} [\lambda_1, \lambda_2] \mathbf{A}_{[\lambda_1, \lambda_2]}$$

=A.

So (6.1) holds.

Definition 6.2 Let λ { L,A,B { P(x),A \subset B.We define λ [A,B] { I(L) $^{\times}$ by $(\lambda [A,B])(x)=[\lambda \wedge \chi_{A}(x), \lambda \wedge \chi_{B}(x)]$.

Decomposition Theorem IV For any $A(I(L)^X)$, we have $A = \bigcup_{\lambda \in I} \lambda [A_{\lambda}^{-}, A_{\lambda}^{\dagger}].$

Proof. Using the decomposition theorem of the general L-fuzzy sets, for any x (X we have

$$\mathbf{A}^{-}(\mathbf{x}) = \bigvee_{\lambda \in L} (\lambda \wedge \chi_{A_{\lambda}^{-}}(\mathbf{x})), \qquad \mathbf{A}^{+}(\mathbf{x}) = \bigvee_{\lambda \in L} (\lambda \wedge \chi_{A_{\lambda}^{+}}(\mathbf{x})).$$

It follows that

$$(\bigcup_{\lambda \in L} \lambda \ [A_{\lambda}^{-}, A_{\lambda}^{+}])(\mathbf{x}) = \bigvee_{\lambda \in L} (\lambda \ [A_{\lambda}^{-}, A_{\lambda}^{+}])(\mathbf{x}) = \bigvee_{\lambda \in L} [\lambda \land \chi_{A_{\lambda}^{-}}(\mathbf{x}), \lambda \land \chi_{A_{\lambda}^{+}}(\mathbf{x})]$$

$$= [\bigvee_{\lambda \in L} (\lambda \wedge \chi_{A_{\lambda}^{-}}(x), \bigvee_{\lambda \in L} (\lambda \wedge \chi_{A_{\lambda}^{+}}(x))] = [A^{-}(x), A^{+}(x)] = A(x).$$

6.1 Decomposition Theorem IV shows that the decomposition of IVL-fuzzy set can be got by decomposing its upper and lower-L-fuzzy sets.

Corollary 6.2 Let L be a dense complete lattice, A($I(L)^X$, then

(1)
$$A = \bigcup_{\lambda \in L} \lambda \left[A_{\lambda}^{-}, A_{\lambda}^{+} \right].$$
 (2) $A = \bigcup_{\lambda \in L} \lambda \left[A_{\lambda}^{-}, A_{\lambda}^{+} \right].$

(2)
$$A = \bigcup_{\lambda \in L} \lambda \left[A_{\lambda}^{-}, A_{\lambda}^{+} \right]$$
.

(3)
$$A = \bigcup_{\lambda \in L_{\lambda}} \lambda \left[A_{\lambda}^{-}, A_{\lambda}^{+} \right].$$

Decomposition Theorem V Let L be a dense complete lattice, A $\in I(L)^X$. If the maps

 $H_i: L \rightarrow P(x) \quad \lambda \mapsto H_i(\lambda) \quad i=1,2$

satisfy the following conditions

$$\bar{A_{\lambda}} \subset H_1(\lambda) \subset \bar{A_{\lambda}} \;, \quad A_{\lambda}^{\dagger} \subset H_2(\lambda) \subset A_{\lambda}^{\dagger},$$

then

$$A = \bigcup_{\lambda \in I_1} \lambda \left[H_1(\lambda), H_2(\lambda) \right]$$
 (6.2)

Proof. It is easy to see that

$$\lambda [A_{\lambda}^{-}, A_{\lambda}^{+}] \subset \lambda [H_{1}(\lambda), H_{2}(\lambda)] \subset \lambda [A_{\lambda}^{-}, A_{\lambda}^{+}], \lambda \in L.$$

By Decomposition Theorem IV and Corollary 6.2 (1), we get

$$A = \bigcup_{\lambda \in L} \lambda \left[A_{\lambda}^{-}, A_{\lambda}^{+} \right] \subset \bigcup_{\lambda \in L} \lambda \left[H_{1}(\lambda), H_{2}(\lambda) \right] \subset \bigcup_{\lambda \in L} \lambda \left[A_{\lambda}^{-}, A_{\lambda}^{+} \right] = A.$$

Thus (6.2) holds.

References

- [1] A.Dziech and M.B.Gorzalczany, Becision making in signal transmisson problems with interval-valued fuzzy sets, Fuzzy Sets and Systems, 23(1987), 191-203.
- [2] M.B.Gorzalczany, A method of inference in approximate redsoning based on interval-valued fuzzy sets, Fuzzy Sets and Systems, 21(1987), 1-17.
- [3] M.B.Gorzalczany, Interval-valued fuzzy controller Based on verbal model of object, Fuzzy sets and Systems, 28(1988), 45-53.
- [4] M.B.Gorzalczany, Interval-valued fuzzy inference involving uncertain (inconsistent) conditional propositions, Fuzzy Sets and Systems, 29(1989), 235-240.
- [5] J.A.Goguen, L-fuzzy sets, J.Math.Anal. Appl. 18(1967), 145-174.