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ABSTRACT
In this paper, the discrete forms of the three
fundamental theorenams: decomposition, expression and
extension theorem in fuzzy set theory are discussed. We

have proved that a fuzzy set can be expressed by a
sequence of ordinary sets and approximated by the finite
ordinary sets.Perhaps,it is bemefit to practial application.

§1 Iatrodection

In fuzzy set theory, the decomposition, expression and
extension theorems are three fundamental theorems. and
they play an important role. It is well—known that these
theorems describe the relation between ordinary set and
fuzzy set. For example, a fuzzy set A can be denoted by

A= U AH(Q) (1.1)
(8

Where { H(A) | A€[0,1]1) is a family of sets with some
properties. In( 1.1), even if the set H(A1) for every
A€[ 0.1] could be known, it is difficult to use them to
find A or the membership function A(x). The reason is that
A changes in the interval [{0,1]1 which is continuous
cardinal number, and the value of A(x) 1is obtained by
taking sup for the uncountable values. In this paper, the
interval [ 0,1] will be repleced by its countable dense
subset in ( 1.1). So that, the right side of (1. 1) is
discrete form, i.e. a fuzzy set A can be determined by a
segquence of ordinary sets (H(1)). Furthermore, we have
proved that the membership function A(x) is a limit of a
sequence of uniformly convergence functions.Of course,
finding A(x) by using limit (or series) has the widespread
using value.

It is called the discrete form of the decomposition



theorea when a fuzzy set A is denoted by the union of the
products of a seguence of sets and some numbers. Similarly,
the discrete forms of the expression theorm and extension

principle are also obtained.

§2. The discrete foram of decomposition theorea

Given the domain X. Let A be a fuzzy set or a function
from X into [0,11, and F(X), P(X) be fuzzy and ordinary

power set on X, respectively. Let A(x) be the membership
function of A. For 1€¢[0,11, set
An={x€X | A(x)>A}, Ap={x€X | A(x)D>1}

They are called A-—cut and strong A-—cut of A,
respectively. The product AA of the number A and A is
the fuzzy set with the membership function AAA( x)

We have

Theorem 2.1 Let D be a dense subset in [0,1]. Then,

A= U AAa (2.1)
A€D
where A¢ F(X).
Proof. It is sufficent to prove that
A(x)=( A& AAa)(x), for x€X, (2.2)

In fact, for every x€¢X, by the definition we obtain
( U AAA)(x)= d’(lA&A(x))= V {A] A(x)>r}=A(x)
A€D D AD

So that, (2.2) holds. The proof is complete.

In theorem 2.1, the set D may be an arbitrary dense
subset in [ 0,1] so that we can obtain a more general
result. In some practice, it is possible that the less the
elements of D, the better the result is. So, we can take D
to be the dense countable subset in [0,1]-rational number
set Q,and let Q={r. ,ra ,~,rn ,~}.For a fuzzy set A,we have

o>
A = 'lgl Cn Ar“

That is A can be uniquely determined by a sequence of the
ordinary sets {Ar| rn €Q, n=1,2,~). This decomposition of

A is more simple that the expression discribed by an
uncountable family of sets. From the point of view of
applications, it is mere conenient.



The same proof as theorem 2.1, we can show that the
decomposition theorem denoted by strong cut is
Theorea 2.2. Let D be a dense subset in [0,1], then

A = U AAy (2.3)
€D

where A€t F(X).
A theorem that is more general than theorem 2.1,2.2 is

Theorea 2.3 Let D be a dense subset in [0,1], and
suppose that the mapping
H: D- P(X), A-H(A)
satisfies the relation
AT H(A) S AN , A €D
Then,
1) A = § AH(A) (2.4)
ACD _
2) If At ,X2¢€D, and A1 <i2, then H(A;)DH(A2)
3) A«= 1 H(A) (a€(0,11) (2.5)
AD, A
A= U H(A) (a€l[0,1)) (2.6)
¢ A M
Proof. 1) since A\cH(A)c An, it follows that

U AAr € U AH(A) © U AAa
AGD D D

By (2.1) and (2.3), we obtain the formula (2.4).
2) Since A1<i2, so H(Ax)DAy.\‘DAh:H(lz)
3) For every fixed e¢¢(0,1}, we obtain

n H(A) e () Ar=A =A
Aop e G

and when A<a,A¢D,the relation AycA,<H(A) holds, so
that

A & 1 HCX)
N

and it follows that (2.5) holds.

A similar argument shows that (2.6) holds,and the
proof is complete.

Since H(1) may be not the cut or strong cut of A, so
that the formula (2.4) is an extension of (2.1) and (2.3).
For ( 2.4), it is noted that the range D of A is more
"smaller” that the interval [0,1], then it is useful from
the point of view of applications.

If D~is a dense countable subset in [0,1] and changing



the formula (2.1), (2.3) and (2.4) into the express forms
of functions, then the membership function of A(x) is the
limit of a sequence of functioms or function series. In
the following, we shall prove this result by taking
theorem 2.1 as an example.

Theorem 2. 4 Let D be a dense countable subset in
[0,1]1 and D={21,%2,«,An,~} Then, the segquence of sets

AW = 45‘ ll A‘i, n=112s“°

is a monotone sequence;and {A™ (x)) converges uniformly
to A(x) with respect to x in X.
Proof. since
AP(x)<[A®(x) IVI AmAAML (x) 1=A®(x), n=1,2,
it follows that AW o AGW for n=1,2, .

We shall show that lim A™(x)=A(x) uniformly with
respect to x in X. For arbitrary e¢>0, first, we take a
natural number m and 4 <$ , divide the interval [0, 1]
egqually into m-parts. By the dence of D in [0,1], we can
take Ay in(%?,#) and Ay €D, (i=1,2,-,m). Then '

Akl<%’ Ah+'§—>1, 0<lh—1h.|<€, for i=2,-,m.

Again, take N=max{ ki ,kz,~,km)} , and the first
N-elements M ,~,w in D are rearranged from small to
large, say Xy <22 (< A%

If necessary,we may set A =0 and Aw=1.It follows that
max (Afpn —Aj )<¢e
0| <N
Since 0=1i5 <A} <Az <~<Aw<Am=1, then for every
x¢X, When A(x)<1, there exists an integer i (0O<i<N)
such that

A <A(x)< Ay
AM(x)= ¥ (A ABa(x)= ¥ (A% Abg (x))=2}
Ky O DR !

So it can be seen that
OKA(X)-AM(x)=A(x)—-A} <Afy—A: <e
When A(x)=1, then A"(x)=Ay, Also, it follows that
OKA(X)-AM(x)=1-Ay<e
As above, for arbitrary ¢>0, there exists a positive
integer N such that when n>»N,



O<KA(x)-A™(x)<A(x)-A%(x)<e, for all x¢X

i. e., A™"(x) converges uniformly to A(x) with respect
to x in X. the proof is complete.

By the result of theorem 2.4, it can be seen that A is
not only determined uniquely by a sequence of the
ordinary sets, but also it is denoted by the limit of a
monotone segence of sets {A™}, and the sequence of the

functions { AW ( x)) corresponding to { AW™) converges
uniformly to A(x) with respective to x¢X. For fixed n,
the range of A™(x) is only the finite subset of D. This

sets the fundamentation for applications and approximate
evaluations.

§3 The discrete form of expression theorea

Let D be a dense countable subset in [0,1] and if
AeD, then 1-1€D. setting
D={ At , Az, =, An, =}
Definition 3.1 If the mapping
H: D- P(X), Ai- H(A{)
satisfies
HCA1)D H(A; ), for Ai<A; and Ai, A €D
Then the mapping H is called a sequence of sets preserving
reverse order with respect to D on X. The set of all H
with the properties of definition 3.1 is denoted by % (X).
Definition 3. 2 For the elements in Up (X) , the
operators |,] and C are definited as follows,respectively.

U Hrt U HyD)CAsD)= U Hr(Ay)
ver ver rer

N Hy: N Hed)(Rid= N Hy (Aj)
Y& ver Yelr
HE: He(A;)=[H(1-21;)]
where A; €D, M is an index set.
Theorea 3.1 Let the mapping
T @ 4Yp(X)= F(X), H -T(H)= ;ﬁ:x;nui)

Then, T is a surjective homomorphism from (Up(X),U,N,C)
onto ( F(X),U,N,C), and

TS HOA ) <T(H)N, (A1€D), (3.1)

T(Hx= N H(A), (a¢(0,1D), (3.2)

Ai <&



T(H)q = ‘g“ H(Ai), (eglo0,1)), (3.3)

Proof. 1) For HE¢U(X), Since
T(H)= ;tIl AHCAD)

Hence T(H) is a defined-element in F(X) and T is a mapping
from Up(X) to F(X).

2) For A¢ F(X), setting H(A;)=Aa, (Xij€D) then
H¢Yp(X) and by theorem 2.1, we get T(H)=A.
i.e. T is a surjective mapping from Up(X) onto F(X).
3) First, x&H(A;) = H(r;)(x)=0
= Ya>Ai, a€D, H(a)(x)=0

=S TH)(x)= V (eAH(a)(x))= V (aAH(e)(x))< V a=14
[ (3)) depnfe.A;) oef0,A;)

= x§T(H)a
Hence T(H),};:H(M ).
Second, x€tH(2i) = H(A;)(x)=1

= T(H)(x)=uy CaAHCa) (X)) 20 AH(A )X (X)) =& = x€T(H)a;
D

It follows that H(A;j)cT(H)x; and (3.1) holds.

4) From (3.1) and theorem 2.3, it follows that (3.2)
and (3.3) hold.

5) By (3.3), Yae€[0,1), we obtain
TC U Hyde= U C U B(Ai)= U C U Hr(ai))
rer M Y4 S 7 g Ao Ve

= U C U Hr(rid)= U T(Hr)x=C U T(Hr))«
ver Ao rq wr

From theorem 2.2, it follows that
TC U Hrd)= U T(Hy)
yer v&r

6) From (3.2), we get
TC N Hyda= 0 C N Hy)(A5)= N C N Hy(Ai))
yer yer <o rer

A<

=N N Hy(Ai))= N T(HY)«=C N T(HY) )
ver  mex rer ver

By theorem 2.1, it follows that

TC N Hyd)= N T(Hy)
ver ver

7) For fixed ¢€(0,1]
T(H)a= N He(A3)= N (H(1-1;))€
A <K A<

i

=C U HC(1-2; 1) =(T(H)a-)€ =((T(H))® )«
=1 *



From theorem 2.1, we have
T(He)=(T(H))*®

From the above 1), 2), 5), 6) and 7), we have showed
that T keeps union, meet and comlementation operators and
T is a surjective homomorphism. The proof is complete.

In general, we also point out that T is not an
injection. For example, let A¢F(X), Hi(Ai)=Aa , Ha(Ai)
=An; (A: €D) and when {Ax | Ai €D}Y#{Ax 1 A;: €D) , it
follows that Hi #H: and T(H:)=T(Hz2) by theorem 2.3.

If we define a relation "«»” on %U(X) as follows

H'oH &S T(H)=T(H)

It is easily checked that ”«” is an equivalent
relation. By the relation "«”, we can compose the
quotient set 1L(X)/« which is an isomorphic with F(X) as
long as defining a proper operator.

§4. The discrete form of extension primciple

Let X and Y be two nonempty sets. The mapping
£f: X-Y, x-f(x)
The Zadeh’'s extension principle is
Definition 4.1 Let the mapping f be from X into Y.we
can get two induced mappings f that is froe F(X) into F(Y)
and £ that is from F(Y) into F(X) as follows
£: F(X)- F(Y), A-f(A)
f*: F(Y)- F(X), B-f'(B).
where the definitions of their membership functions are
f(A)(y)= ﬂX! A(x) and f1(B)(x)=B(f(x)),
respectively.
An equivalent result to the definition 4.1 is
Theorem 4. 1 Let the mapping f from X into Y and
ACF(X) , BEF(Y). If the fuzzy sets £(A) and £ (B) are
defined as above. Then
f(A)= U AfCAA)= U Af(AN)
A0 Aélon)

£1(B)= U Af(Ba)= U Af'(By)
Ac(e.1) o9
In theorem 4.1, the results hold when the index set
[0,1] is replaced by its dence subset.
Theorem 4.2 Let D be a dence subset in [0,1] and the
sapping £f: X-Y. then



f(A)= U Af(Ar), for ACF(X)
A

£ (B)= U Af'(Ba), for BEF(Y)
AED

The proof is simple.
Theorem 4.3 Let D be a dence subset in [0,1], the
mapping £ is from X into Y, A€F(X), and B¢F(Y). Then
1) f£(A)= U Af(Aar)
D

2) f£9(B)= U Af'(By)
ACD
3) If the mapping H: D-P(X), A-H(RA)
satisfies AyCH(A) C Ar, €D
Then £(A)= U Af(H(A))
AED

4) 1f the mapping H’: D-P(Y), A-H’'(}r)
satisfies BycH’ (A) <= Ba, AED
Then £4(B)= U AET(H'(A)).
AeD

The proof is omitted.
We can chose D that is a countable dence subset in
[ 0,11 and D={As ,A2,~,%i ,~}. Give the mapping £f: X-Y
and A¢F(X), then
£(A)= E' Ai £ (AN

We can use the above formula to find out f( A) or
caluculate approximatly £f(A)(y) (y€Y). The result may be
helpful to solve the practical problems.
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