CONNECTEDNESS OF GREY TOPOLOGICAL SPACE (CONNECTEDNESS OF COMPOSITION FUZZY T.S.)
YANG ZHI-MIN, Handan Teacher's Cottege,
Handan, Hebei, China

ABSTRACT: In this paper the connectedness of grey topo—
togical space is studied. The definitions and
their theorems of connectedness of grey topo—
togical space are introduced.

KEYWORDS: Grey homeomorphic mapping, connected grey set and connected component.

I. INTRODUCTION

We introduced the definitions of grey topological space and of grey continuous mapping and preliminary studied compactness of grey topological space in [2]. We shall study the connectedness of grey topological space on this basis. Definition 1: Let f be a bijective from the grey topological space (X,\mathcal{J}) to the grey topological space (Y,\mathcal{J}') . If f and f are grey continuous all, then f is called the grey homeomorphic mapping. (X,\mathcal{J}) and (Y,\mathcal{J}') are called grey homeomorphic topological spaces, usually written $(X,\mathcal{J}) \cong (Y,\mathcal{J}')$. Theorem 1: Let f be a mapping from the grey topological space (X,\mathcal{J}) to the grey topological space (Y,\mathcal{J}') . A is a grey subset of X and B, B, and B, are grey subsets of Y, then:

- (1) $f^{-1}[B_1 \cup B_2] = f^{-1}[B_1] \cup f^{-1}[B_2]$.
- (2) $f^{-1}[B_1 \cap B_2] = f^{-1}[B_1] \cap f^{-1}[B_2]$.
- (3) $\overline{U}_{A}(x) \leq \overline{U}_{f^{\bullet}(f(A))}(x)$, $\underline{U}_{A}(x) \leq \underline{U}_{f^{\bullet}(f(A))}(x)$, $\forall x \in X$.
- (4) $\overline{\mathcal{U}}_{\mathbf{f}(\mathbf{f}^*(B))}(y) \leq \overline{\mathcal{U}}_{\mathbf{B}}(y)$, $\underline{\mathcal{U}}_{\mathbf{f}(\mathbf{f}^*(B))}(y) \leq \underline{\mathcal{U}}_{\mathbf{B}}(y)$, $\forall y \in Y$.
- (5) And f is the grey continuous mapping. If B is the closed subset of Y, then $f^{-1}[B]$ is the closed subset of X.
- (6) And f is the grey continuous mapping, then $\widehat{U}_{f(A)}(x) \leq \widehat{U}_{f(A)}(x)$, $U_{f(A)}(x) \leq U_{f(A)}(x)$, $\forall x \in X$.
- (7) And f is the grey continuous mapping, then

 $\overline{U}_{f(\overline{B})}(y)$, $\underline{U}_{f(\overline{B})}(y)$, $\underline{U}_{f(\overline{B})}(y)$, $\forall y \in Y$. Proof: We prove (5), (6) and (7) only.

(5) From reference [2] we have $f^{-1}[B^{C}] = [f^{-1}[B]]^{C}$.

Hence if B is the grey closed subset of Y, then B is the grey open subset of Y. So $f^{-1}[B^C] = [f^{-1}[B]]^C$ is the grey open subset of X, hence $f^{-1}[B]$ is the grey closed subset of X.

(6) From (3) we have $\overline{U}_A(x) < \overline{U}_{f^{-1}(f(A))}(x)$, $\forall x \in X$. And it is obvious $\overline{U}_{f^{-1}(f(A))}(x) < \overline{U}_{f^{-1}(f(A))}(x)$, $\forall x \in X$, hence

 $\overline{U}_A(x) \le \overline{U}_{f'(f(A))}(x) \le \overline{U}_{f'(f(A))}(x)$, $\forall x \in X$. Also from (5) we have $f^{-1}[\overline{f(A)}]$ being the grey closed set, hence

 $\overline{U}_{\overline{A}}(x) \leq \overline{U}_{\overline{f}(\overline{A})}(x)$, $\forall x \in X$. So $\overline{U}_{\overline{f}(\overline{A})}(x) \leq \overline{U}_{\overline{f}(\overline{A})}(x) \forall x \in X$. In the same way we can also prove $\underline{U}_{\overline{f}(\overline{A})}(x) \leq \underline{U}_{\overline{f}(\overline{A})}(x) \forall x \in X$.

(7) From (6) we have $\overline{\mathcal{U}}_{f(f'(B))}(y) \leq \overline{\mathcal{U}}_{f(f'(B))}(y) \leq \overline{\mathcal{U}}_{g}(y)$, $\forall y \in Y$, hence $\overline{\mathcal{U}}_{f(g)}(y) \leq \overline{\mathcal{U}}_{f(g)}(y)$, $\forall y \in Y$.

In same way we can also prove $\bigcup_{\overline{F(B)}}(y) < \bigcup_{\overline{F(B)}}(y)$, $\forall y \in Y$. Theorem 2: Let (X, \mathbb{J}) be a grey topological space. The grey subset A of X is the closed set if and only if $A = \overline{A}$. Theorem 3: Let X be a whole grey set, a be a grey point of X, then $X = \bigcup_{x \in A} \{x \in X\}$.

X, then $X = \bigcup_{\alpha \in X} \{a\}$. Definition 2: Let (X, \mathbb{J}) be a grey topological space, A and B be grey subsets of X. If $\overline{A} \cap B = A \cap \overline{B} = \emptyset$, then A and B are called separated.

II. CONNECTEDNESS OF GREY TOPOLOGICAL SPACE Definition 3: Let (X, \Im) be a grey topological space, C be a grey subset of X. If there do not exists non—vacuous separated grey subsets A and B of X such that $C=A \cup B$, then C is called the connected grey set.

If the whole grey set X is the connected set, then (X,\mathcal{I}) is called the connected grey topological space. Theorem 4: Let (X,\mathcal{I}) be a grey topological space, the following are equivalent:

(1) (X,J) is not connected.

- (2) There exists non-vacuous grey closed sets A and B such that $A \cup B = X$ and $A \cap B = \emptyset$.
- (3) There exists non-vacuous grey open sets A and B such that $A \cup B = X$ and $A \cap B = \emptyset$.

Proof: If (X,\mathcal{I}) is not connected, then there exists grey subsets A and B of X such that $A \cup B = X$ and $\overline{A} \cap B = A \cap \overline{B} = \emptyset$.

 \rightarrow AUB = X and A\cap B = \(\text{Ø} \). Where

 $\overline{A} = \overline{A} \cap (A \cup B) = (\overline{A} \cap A) \cup (\overline{A} \cap B) = (\overline{A} \cap A) \cup \emptyset = \overline{A} \cap A = A.$

 $\overline{B} = \overline{B} \cap (\overline{B} \cup A) = (\overline{B} \cap B) \cup (\overline{B} \cap A) = (\overline{B} \cap B) \cup \emptyset = \overline{B} \cap B = B.$

Hence A and B are grey closed sets att. So $(1) \rightarrow (2)$.

It is obvious (2) \rightarrow (1). Hence (1) \leftarrow \rightarrow (2).

- If (2) is correct, then there exists non-vacuous grey closed sets C and D such that $C \cup D = X$ and $C \cap D = \emptyset$.
- → max { $\underline{\mathcal{U}}_{C}(x)$, $\underline{\mathcal{U}}_{D}(x)$ }=1 and

min { $\overline{U}_{C}(x)$, $\overline{U}_{D}(x)$ }=0. $\forall x \in X$.

Also $\bar{U}_{C}(x) = 1 - \underline{U}_{C}(x)$, $\underline{U}_{C}(x) = 1 - \bar{\underline{U}}_{C}(x)$,

 $\overline{U}_D(x) = 1 - \underline{U}_{D^c}(x)$, $\underline{U}_D(x) = 1 - \overline{U}_{D^c}(x)$, $\forall x \in X$.

Then $\max\{1-\overline{U}_{C^c}(x), 1-\overline{U}_{D^c}(x)\}=1$ and

 $\min\{1- \text{$\underline{U}$}_{C^c}(x), 1- \text{$\underline{U}$}_{D^c}(x)\} = 0, \forall x \in X.$

- \rightarrow Of $\square_{C^c}(x)$ and $\square_{D^c}(x)$ ($\forall x \in X$) at least one must be equal to $0 \land$ of $\square_{C^c}(x)$ and $\square_{D^c}(x)$ ($\forall x \in X$) at least one must be equal to 1.
- \rightarrow min { $\overline{U}_{C^c}(x)$, $\overline{U}_{D^c}(x)$ } = $0 \land \max \{\underline{U}_{C^c}(x), \underline{U}_{D^c}(x)\}$ = 1.
- \rightarrow max { $U_{Cc}(x)$, $U_{Dc}(x)$ } = max { $U_{Cc}(x)$, $U_{Dc}(x)$ } = 1

and min $\{\overline{U}_{C^c}(x), \overline{U}_{D^c}(x)\} = \min \{\underline{U}_{C^c}(x), \underline{U}_{D^c}(x)\} = 0.$

 $\rightarrow C^{c} \cup D^{c} = X$ and $C^{c} \cap D^{c} = \emptyset$.

Let $A = C^{C}$ and $B = D^{C}$. Since C^{C} and D^{C} are grey closed sets, hence A and B are grey closed sets.

So there exists non-vacuous grey open sets A and B such that $A \cup B = X$ and $A \cap B = \emptyset$. So (2)—(3).

In the same way we can also have (3) \rightarrow (2). Hence (2) \leftarrow \rightarrow (3). Theorem 5: Let (X,J) be a grey topological space, a be a

grey point of X, then a is the connected grey set.

Theorem 6: Let (X,\mathcal{I}) be a grey topological space, A be a connected grey subset and B be a grey subset of X. If $A \subseteq B \subseteq \overline{A}$, then B is connected.

Proof: Let $B = C \cup D$ and $\overline{C} \cap D = C \cap \overline{D} = \emptyset$. If we want to prove B is connected only need to prove $C = \emptyset$ or $D = \emptyset$.

Let $C_i = A \cap C$ and $D_i = A \cap D$, then $\overline{C_i} \cap D_i = C_i \cap \overline{D_i} = \emptyset$, and $C_i \cup D_i = A$ (actually $C_i \cup D_i = (A \cap C) \cup (A \cap D)$) $= [(A \cap C) \cup A] \cap [(A \cap C) \cup D] = A \cap [(A \cup D) \cap (C \cup D)]$ $= A \cap [(A \cup D) \cap B] = A).$

Since A is connected, then $C_1 = \emptyset$ or $D_1 = \emptyset$.

If $C_i = \emptyset$, then $A = D_i = A \cap D$. $\rightarrow \overline{U}_A(x) = \min\{\overline{U}_A(x), \overline{U}_D(x)\}$, $\forall x \in X$. $\rightarrow \overline{U}_A(x) < \overline{U}_D(x)$, $\forall x \in X$.

Also B = $C \cup D \subseteq \overline{A}$, hence $\overline{U}_{\overline{A}}(x) > \underline{U}_{\overline{A}}(x) > \overline{U}_{\overline{B}}(x)$

= $\max\{\overrightarrow{U}_{\mathbb{C}}(x), \overrightarrow{U}_{\mathbb{D}}(x)\}, \forall x \in X$. And $\overrightarrow{U}_{\mathbb{C}}(x)$

=min{ $\overline{U}_{\mathbb{C}}(x)$, max{ $\overline{U}_{\mathbb{C}}(x)$, $\overline{U}_{\mathbb{D}}(x)$ }=min{ $\overline{U}_{\mathbb{C}}(x)$, $\overline{U}_{\mathbb{B}}(x)$ } $\forall x \in X$, hence $\overline{U}_{\mathbb{C}}(x) \leq \min{\{\overline{U}_{\mathbb{C}}(x), \overline{U}_{\mathbb{A}}(x)\}}$, $\forall x \in X$.

 $So \overline{U}_{C}(x) \leq \min \{\overline{U}_{C}(x), \overline{U}_{\overline{D}}(x)\}, \forall x \in X.$

Also $C \cap \overline{D} = \emptyset$, hence $\min\{\overline{U}_C(x), \overline{U}_{\overline{D}}(x)\}=0 \ \forall x \in X$. $\rightarrow \overline{U}_C(x) = \underline{U}_C(x) = 0 \ (\forall x \in X) . \rightarrow C = \emptyset$.

If $D_1 = \emptyset$, In the same way we can also prove $D = \emptyset$. So B is connected.

Theorem 7: Let (X,J) be a grey topological space, At $(t \in T)$ be grey subsets of X. If At $(t \in T)$ are connected and there exists $s \in T$ such that As and At are not separated for all $t \in T - \{s\}$, then $A = \bigcup_{t \in T} At$ is connected.

Corollary: Let (x, \mathcal{I}) be a grey topological space,

At $(t \in T)$ be connected grey subsets of X. If $\bigcap_{t \in T} At \neq 0$, then $\bigcup_{t \in T} At$ is connected.

Definition 4: Let (X,\mathcal{J}) be a grey topological space, A be a maximal connected grey set (or if $A\subseteq B$ and B is connected, then A=B). Then A is called the connected

component of (X, \mathcal{I}) .

Theorem 8: Let (x, I) be a grey topological space, then:

- (1) Union of all connerted components is equal to X.
- (2) Different connected components are not joint.

Proof: (1) Choose any point $a \in X$, then a is the connected grey set. Let $\mathfrak{B} = \{A \mid a \in A \text{ and } A \text{ is the connected grey subset of } X\}$, then $\cap \mathfrak{B}$ is non-vacuous. And let $\mathcal{U} = \bigcup \mathfrak{B}$. From corollary of theorem 7 we have \mathcal{U} is connected and \mathcal{U} is the connected component.

Hence all there exists connected components of containing a, $\forall R \in X$. Also $\bigcup_{\alpha \in X} \{a\} = X$, hence union of all connected components of (X, \mathcal{I}) is equal to X.

(2) Let A and B are different connected components.

Suppose A and B are joint, then there exists $x \in X$ such that $\min\{\underline{\mathcal{U}}_A(x),\underline{\mathcal{U}}_B(x)\} > 0$. $\rightarrow \min\{\overline{\mathcal{U}}_A(x),\overline{\mathcal{U}}_B(x)\} > 0$. $\rightarrow A \cap B \neq \emptyset$. From corollary of theorem 7 we have $A \cup B$ is connected. In contradiction with A (or B) is the connected component. Hence A and B are not joint.

Theorem 9: Let f be a grey continuous mapping from the grey topological space (X,\mathcal{I}) to the grey topological space (Y,\mathcal{I}') . If A is a connected grey subset of (X,\mathcal{I}) , then f[A] is the connected grey subset of (Y,\mathcal{I}') .

Proof: If $f[A] = B \cup C$ and $\overline{B} \cap C = B \cap \overline{C} = \emptyset$.

And let $E = f^{-1}[B]$ and $F = f^{-1}[C]$, then $\overline{U}_A(x) \leq \overline{U}_{f^{-1}(A)}(x)$

= $\overline{U}_{f'(BUC)}(x) = \overline{U}_{f'(B)}U_{f'(C)}(x) = \overline{U}_{EUF}(x) = \max{\{\overline{U}_{E}(x), \overline{U}_{F}(x)\}},$ $\forall x \in X.$ Also $\overline{U}_{E}(x) = \overline{U}_{f'(B)}(x) \leq \overline{U}_{f'(B)}(x)$ and

 $\vec{U}_{F}(x) = \vec{U}_{F(C)}(x) \leq \vec{U}_{F(C)}(x), \forall x \in X, \text{ hence } \vec{U}_{E\cap F}(x) =$

 $\min\{\bar{U}_{\bar{E}}(x), \bar{U}_{F}(x)\} \leq \min\{\bar{U}_{F(\bar{E})}(x), \bar{U}_{F(C)}(x)\} = \bar{U}_{F(\bar{E})}(f(C)(x)$

 $= \widehat{\mathcal{U}}_{\mathbf{f}}(\mathbf{g}_{\mathsf{n}}(\mathbf{x})) = \widehat{\mathcal{U}}_{\mathbf{f}}(\mathbf{x}) = \widehat{\mathcal{U}}_{\boldsymbol{\phi}}(\mathbf{x}) = 0, \forall \mathbf{x} \in \mathbf{X}.$

And let $G = A \cap E$ and $H = A \cap F$, hence $A = G \cup H$ and $\overline{G} \cap H$

- = $G \cap \overline{H} = \emptyset$. Since A is connected, hence $G = \emptyset$ or $H = \emptyset$. Suppose $G = \emptyset$ (without loss of generality), then $\overline{U}_{A}(x) = \overline{U}_{H}(x) = \overline{U}_{A} \cap F(x) = \min\{\overline{U}_{A}(x), \overline{U}_{F}(x)\}$ $< \overline{U}_{F}(x), \forall x \in X. \rightarrow \overline{U}_{f}(A)(X) = \sup\{\overline{U}_{A}(x)\} < \sup\{\overline{U}_{F}(x)\}$ $x \in f^{1}(y) \qquad x \in f^{1}(y)$
- $= \widehat{IJ}_{f(F)}(x) = \widehat{IJ}_{f(f(C))}(x) < \widehat{IJ}_{C}(x), \forall x \in X.$ Also $f[A] = B \cup C$, hence $\widehat{IJ}_{f(A)}(x) = \max\{\widehat{IJ}_{B}(x), \widehat{IJ}_{C}(x)\}$ $\forall x \in X. \rightarrow \widehat{IJ}_{B}(x) = \min\{\widehat{IJ}_{B}(x), \widehat{IJ}_{f(A)}(x)\} < \min\{\widehat{IJ}_{B}(x), \widehat{IJ}_{C}(x)\}$ $\widehat{IJ}_{C}(x) = \widehat{IJ}_{B \cap C}(x), \forall x \in X. \text{ From } \widehat{B} \cap C = \emptyset \text{ we have } B \cap C = \emptyset,$ then $\widehat{IJ}_{B}(x) < \widehat{IJ}_{B \cap C}(x) = \emptyset (\forall x \in X) \rightarrow \widehat{IJ}_{B}(X) = \widehat{IJ}_{B}(X) = \emptyset$ $(\forall x \in X) . \rightarrow B = \emptyset. \text{ So } f[A] \text{ is connected.}$

Corollary: Connectedness of the grey topological space is the topological property of the space. Or if f is a grey homemorphic mapping from the grey topological space (X,\mathcal{I}) to the grey topological space (Y,\mathcal{I}) . Then (X,\mathcal{I}) is connected if and only if (Y,\mathcal{I}) is connected.

REFERENCES

- [1] Wu Heqin, Wang Qingyin, The Theory of Compound Fuzzy
 Sets, Initial Inquisition of the Theory of Grey Numbers.
 Proceeding of NAFIPS'88.
- [2] Yang Zhimin, Tian Zukai, Grey Topological Space.
 BUSEFAL, issue n° 39.
- [3] Wang Guojun, The Theory of L-fuzzy Topological Space.
 Publishing House of Shanxi Normal University, 1988.