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ABSTRACT; In this paper the connectedness of grey topo—
logical spase is studied The definitions and
their theorems of connectedness of grey topo—
togical space are introduced.
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[. INTRODUCTION |
We introduced the definitions of grey topological space
and of grey continuous mapping and preliminary studied com—
pactness of grey topological space in [2].We shall study the
connectedness of grey topological space on this basis.
Definition 1, Let f he a bijective from the grey topological
space (X,J) to the grey topological space (Y,J) . If f and f
are grey continuous al(, then f is called the grey homeomor—
phic mapping. (X,) and (Y,J) are called grey homeomorphic
topological spaces,usually written (X,J) & Y,J39 .
Theorem {, Let f be a mapping from the grey topological
space (X,J) to the grey topological space (Y,J) . A is a
grey subset of X and B,B,and Byare grey subsets of Y, then,
() B, UBa]=1*[B:] U f[Ba]. '
@ f™[B, NBa]=1"[B,] N7 [Ba].
@ Oa0) < JTgaceean () » AAKD < U seeap(X) » YXEXK

@ Deeeven (V) < Us(¥) » Mppyen(y) < Mgl¥) ,vyEY.
() And f is the grey continuous mapping. If B is the closed

subset of Y, then f™[B] is the closed subset of X,
¢) And f is the grey continuous mapping, then

a1 < JJFray 0 LM a0 < M A5 (¥) , wxEX
(M And f is the grey continuous mapping, then



Dm(y) <ﬂf“iﬁl(y) 'MEe (V) <Up@ (Y) ,vyeY.
Proof; We prove (5),(6) and (1) only,

(5) From reference [2] we have f~[B¢]=[f"[B]]°.
Hence if B is the grey closed subset of Y, then B is the
grey open subset of Y. So f'[B¢]=[f7[B]]® is the grey open
subset of X,hence f'[B] is the grey closed subset of X.
() From (3) we have Ua(x) < JUf-cprA)(X) , Wx€X. And it
is obvious [ fereA)(x) < TpETAIX) , YXEX , hence
A < Opigcan®) < OpERIX) , vX€X. Also from
(5) we have f[f[A]] being the grey closed set, hence
)j;((x) < Ef-l(f-t—A])(X) » VXEX, Soﬂfm(x) <ﬂf’ﬁ><) vx€X.
In the same way we can also prove Llea(x) <Ugr(x) Vx€X.
() From (&) we have Ugcpig(y) < Orgmn(y) < Usg(¥)
vy€Y, hence Uz (¥) < Oigy(y) , V€Y.
In same way we can also prove,(__Jf:(—B-j(y) <;_J_fq(m(y) ,VYEY,
Theorem 2, Let (X,J) be a grey topological space. The
grey subset A of X is the closed set if and only if A = &,
Theorem 3, Let X be a whole grey set, a be a grey point of
X, then X :a%x{ a }.
Definition 2, Let (X,J) be a grey topological space, A
and B be grey subsets of X. If ANB = ANB = £, then A and
B are called separated.

I1. CONNECTEDNESS OF GREY TOPOLOGICAL SPACE
Definition 3, Let (X, J) be a grey topological space,C
be a grey subset of X If there do not exists non— vacuous
separated grey subsets A and B of X such that C=AUB, then
C is called the connected grey set.

[f the whole grey set X is the connected set, then (X,J)
is called the connected grey topological space,
Theorem 4, Let (X,J) be a grey topological space, the
following are equivalent,
(0 (X,J) is not connected,



@ There exists non—vacuous grey closed sets A and B such
that AUB = X and ANB = @,

@) There exists non—vacuous grey open sets A and B such
that AUB = X and ANB = §.

Proof; If (X,J) is not connected, then there exists grey

subsets A and B of X such that AUB = X and AN B=AN B=f.

— AUB = X and ANB = @, Where
A= AN (AUB) = (ANA) U (ANB) = (ANA) UF=ANA=A,
B =Bn (BuA) = (BnB) U (BnA) = (BnB) U@-BnB=B.
Hence A and B are grey closed sets all. So (I)—(2).

[t is obvious @—(). Hence (I)«~—(2).
[f @ is correct, then there exists non—vacuous grey

closed sets C and D such that CUD = X and CND = 4.

— max { Le(x) , Up(x) }=1 and
min { Ue(x) , Op(x) }=0. Wxe€X.

Atso Ug(x) = [—Meedx) , Ypx) = 1= (x) ,
Up(x) = 1= Upe(x) , Up(x) = 1=Opex) , vx€X.

Then max{1—Uec(x) ,1—Upe(x) } = | and

min{l—LUee(x) , 1—LUpe(x) } = 0, VxEX.

— Of Jee(x) and Jpe(x) (Wx€X) at least one must be
equal to 0 A of JJcc(x) and Mpe(x) (Vx€X) at (east
one must be equal to [.

— min (Uee(x) ,0pe(x) } = 0Amax {(Uee(X) , Upex) ) = L.

— max {Uee (xX) ,Upe(x) } = max {Tee (x) ,Upe(x) ) = 1

and min {(Uce(x) , Upe(x) } = min {Jec(x) ,Upe(x) } = 0.

— CSUD® = X and CC[}DC = 4.

Let A = C® and B = D®. Since C® and DC are grey closed
sets,hence A and B are grey closed sets,

So there exists noin—vacuous grey open sets A and B such
that AUB = X and ANB = §. So @—@).

[n the same way we can also have (3)—(2).Hence (2)«~——(@3).
Theorem 5. Let (X,J) be a grey topological space, a be a



grey point of X, then a is the connected grey set.
Theorem 6; Let (X,J) be a grey topological space, A be a
connected grey subset and B be a grey subset of X, If
ASB KA, then B is connected.
Proof, Let B = CUD and €ND = cND = g.1f we want to prove
B is connected only need to prove C = for D =g '
Let C;= ANC and D= AND, then T, NDs= C, NDi=f,
and Cy UD;= A Cactuatlly C;UD;= CANC) U (AND)
=[(ANC) UATN[ANC) UD ]= AN[ (AUD) N (CUD) ]
=AN[ (AUD) NB ] =4) .
Since A Is connected, then C;= § or D= .
If Cy= @, then A = Dy= AND, — ﬂA(x) = nln{ﬂA(x) ,
Hpx) 1, wxeX, — Oax) < Opx) ,vxeX.
Atso B = CUDSA, hence [Jr(x) >Ux(x) >Ug(x)
= max{Je(x) ,Up(x) },wx€X. And Jc(x)
=ain{Jc(x) ,max{Tc(x) ,Tp(x) })=min{Tc(x) ,Tg(x) }
vx€X, hencelJc(x) <min{[Tp(x) ,Jx(x) }, Yx€X.
Sojlg(x) <min{Te(x) ,J5(x) }, vx€X.
Atso CND = f, hence min(J¢(x) ,Up(x) }=0 Vx€X.
— Jcx) = Melx) = 0 (VXEX) . — C = §.
If Dy= §, In the same way we can also prove D = .
So B is connected,
Theorem 7, Let (X,J) be a grey topological space,At (t€T)
be grey subsets of X. If At (t€T) are connected and there
exists s€T such that As and At are not separated for all
t€T—{s}, then A :tLeJTAt is connected,
Corollary; Let (x,J) be a grey topological space,
At (t€T) be connected grey subsets of X, If 0 At # O,
then (U At is connected, , teT
Deflr?ie;rion 4: Let (X,J) be a grey topological space, A
be a maximal connected grey set (or if ASB and B is
connected, then A = B) _Then A is calted the connected



component of (X,J) .
Theorem §, Let (x,J) be a grey topological space, then,
() Union of all connerted components is equal to X,
@ Different connected components are not joint,
Proof; (I) Choose any point ac€X, then a is the connected
grey set., Let &)= {(Ala€A and A is the connected grey
subset of X), then NJ)is non—vacuous, And (et U=Ud .
From corollary of theorem 7 we have 9 is connected and 4
is the connected component,
Hence all there exists connected components of containing a,
vaeX. Also uLCJ_X{M = X, hence union of all connected
components of (X,J) is equal to X,
@ Let A and B are different connected components.
Suppose A -and B are joint, then there exists x€X such
that min{Ua(x) ,Ug(x) } > 0. —min{TJa(x) ,Up(x) } > 0.
— ANB # f#. From corollary of theorem 7 we have AUB is
connected. In contradiction with A (or B) 1is the connected
component, Hence A and B are not joint.
Theorem 9, Let f be a grey continuous mapping from the
grey topological space (X,J) to the grey toplogical space
(Y,7) . If A is a connected grey subset of (X,J) , then
f[{A]lis the connected grey subset of (Y,J) .
Proof, If f[A]= BUC and BNC = BNT = 4.
And tet E = f[Bland F = f7[C], then JJA(X) <JUgemfx)
= Dpigue X =Detmupig$) Teup () =max(UE(x) , g (x) J,
vx€X. Atso JJg(x) = Ugmg(x) < Uggx) and
Bex) = Uagg () < Opygy (x) , vx€X, hence Jgap (X) =
pin{Jg(x) ,Opx) I<min{Jpgg(x) , Upig(x) 1=Up@inpex)
= Jenci(¥) = Upygy () = Jp(x) = 0, vx€X.
—~ Jgng (X) = Meap (X = 0, vx€X. — ENF = §.
In the same way we can also prove ENF = 4.
And let G = ANE and H = ANF, hence A = GUH and GNH



= GNH = §. Since A is connected, hence 6 = f or H = .

Suppose G = @ (without (oss of gemerality) , then
JA(x) = ﬂh(x) = JJANF (x) = min{ JOACX) , JOp(x) )
< Jpx) , vx€X. — Ogag(X) = suplTaACx) I<sup{Up(x) )

x € £(y) X€ (y)
= Ef[]:)(x) = Uf(f‘(c)](X) < Uc(x) , vx€X,

Atso f[A]= BUC, hence IIﬂJU(X) = max{Ug(x) , Jc(x) }
vx€X. — Ug(x) = nin{lUg(x) ,Ugay(x) }< min{Jg(x) ,
e(x) )= BBnc (x) ,vx€X. Fromn BNC = # we have BN C=f,
then Jg(x) <Upnc(x) = 0 (vx€X) — Jg(X) =p(X) =0

(vx€X) .~ B = §, So f[A] is connected.
Corollary ; Connectedness of the grey topological space
is the topological property of the space, Or if f is a grey
homemorphic mapping from the grey topological space (X,J)
to the grey topological space (Y,J) . Then (X,J) is
connected if and only if (Y,J) is connected,
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