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“The main questions of fuzzy set theory and fuzzy logice
arisen from its originris connected with conjuction, disjun-
ctiony negation and implication definitions. It became clear
after important work by Dr.Zimmermann and his Aachen’s colle-
agues that everuthing we need Fbr many practical tasks sol-
ving is a parametric definition family which in case of need
would assume some non-standard choice of operatorsy reflect-
ing the characteristic features of specific supplement. The
advantage of such approash is that avoiding fixeds specifi-
cally~independent definitions fuzzy set theory and fuzzy lo-
gic are reaching pluralisms increasing their ?iexibilitg and
expressive possibilities” (L.A.Zadeh).

It’s known that introduktion of triangular norms 'T and
triangular conorms ~L presented one of the feasible ways
of solving this task [1]~[3]

Let’s formulate the results.

1. Let two-place real function H: IKI‘>I, I= [an], 0ca<b<o
satisfies the folloving condition: a)associativityr b)commu~
tativityr c)non-decreasing in each argument, d) ff(q,2)==.2
Function g;[o, 1]—)[0,6] (f‘unctionf:[O,I]"[o,b] Ysingle~-placed
continuosly strictly increasing(strictly decreusing)é;(a)==f(1)==0-

Theorem 1. Two-placed real function
..L:[o,1]x[0,1]->[0,1], _L(x,y)-.zg"(min(g(i)’ H(g(x),g(y))))‘_

is a triangular conorm.



Theorem 2. Two-place real function

T:[0,1]1x[0,41->[0,1], T(x,y)= f‘.f(/m'n(f(O), H @), £(3))))

is a triangular norm.

Example 1.

T(x,y) =‘f—’(ﬂ7in (f (o), f(x)+f(>’)(1+2f(x)/f(o))))

L(xy)= g (min(gc1), gexy+ gy (14380 ) g1)))

here and further —4 < A < co .

Example 2.

T(x,y) =max (0, (4+2)(x’.’;.yf1)— Q\xpy'”)'b
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T(x,y)=max (0, _L x4y 2 x
y) (’/+a< yf)+1+2 y)
P p P PF
dual L (x,y)=min(1, 21y’ ax'y )

correspondingly relatively strong negation
3 Y
P P
n(x):.—(a.-xp) , nx)=({(1-x )/(/+2x )

here and further P >0.
2. Let Z: is sety 415&96 . Q3 is Borel algebra of 4 » Denote r&
fuzzy measurer presented by Sugeno [5]. As well knounfz]v [5]

fuzzy measure conjunction two set presentation as
w(AUB)=L(u(A), f(B)), ANB=@, VA BeD.

We construct now fuzzy measure generalise Sugeno’s measure

-1 _ )
R)(A UB)=g (min(g(1), go,“(A)-q-go/«(B)(/+Ago/4(A)/g(f)))).



Then
R(A)=g (g - go{u(A))/(i-Mgo [/ g, g1y <eo .

If A=0 we hawe Weber measure [6] .

3. Let [ is function meaning with property of theoretic—
probability of distribution function. Using such functions
for V(a,b)C R (R is real line)s generalise Sugeno distri-~

bution F‘;, as folloving

R ((a,6)) = g”(( goF(b)-goF (a))/(1+2go Fa)/g1)), gt1)<oo .
When F(x)=x put

(@ 6) = g (g(8) - g(a)/(1+21gca) /g ()

Denote through E (/l) Sugeno integral [5] of measurable
function h L -> [0,1] with respect to a fuzzy measure IIL .

Theorem 3. If strong negation function

n(x)= € (gt — g(x))/(1+ Ag(x)/g(1)))
then n(ERa(A))# ERA(n(/‘)) :
Theoren 4.
£, 4= VT 1o
(R =g (gm/z).

4
Example 3. If g(x)-.—ﬂcp then £ (/')=('21)p
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If g(x)=1—(1-x) then E/“o(k) =1~ (2 ) .
4. Let two-place real function /V]X[—>I satisfiecs condi-

tions: b)r c)y e)continiousr £) N(g0)=0, /V(é,é)zé, g(ﬁ:é ,
g N(r,2) € [min(r,2), max(r, z)] , N € {min, max }
and M is averaging operator [7]. Then two-place function

Mg : [0,1]x[0,1]->[0,1], Mg (x,y) =g (V(gex), £))

is averaging operator. If 2 is strong negation function:

then -1 _4

Mp (%, y)=rog (N(genrlx), genCy)))

also is averaging operator. Let K: IxT»> T satisfies condi-

tions?: b)-e) and when A4 is strong negation functions then
gliKkigm, g)) = Rog (K(gonx), goniyy),

K is named self-dual comparatively strong negation A

Then

Mg (x,y) = g (K(gt), £0))
M, (x,y) = n—zg—(/((g- n(x), g«n(y)))

is equal: M= Mg=/"{‘_. In this case is named their avera-
ging operator self-dual comparatively strong negation 2 .

Example 4. If 'P-i-ﬁ:i’ P>0 then

=

1
4 P
M(x,y):(pxP+ByP)P, n(x)=(1-xk)

Ja

P

ol

p P
M(":y)=4—((3(1—x)+(51(4-y)) , ﬂ(x)=1—(1—(1—x)P)

P

1
-1 1—- ¢

p
A
M(x;}’)= (+3x) (4+ y) . n(x) =
A 1+ Ax
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