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1 - Introduction

All the pieces of information stored in a knowledge base are not always regarded as equally
certain. Quite often a part of the information is not completely certain since it is based on
incomplete evidence or it corresponds to rules liable to have exceptions. Possibilistic logic (see
Dubois and Prade. 1988), through the use of so-called necessity measures, offers a way of
grading certainty on a numerical scale. As recalled in the next section, these necessity measures are

the unique numerical counterpart of qualitative ordering relations which model "is at least as certain



as". These qualitative foundations of necessity measures are in agreement with the fact that when
assessing degrees of certainty, only the ordering of these numbers is sometimes really meaningful.
In section 3 we point out that the axioms satisfied by an ordering relation underlying a qualitative
necessity measure are equivalent to those recently proposed by Gi.irde'nfors and Mackinson (1988)
for modelling epistemic entrenchment in order to first question the less entrenched belief in a
revision process. Then it is not too much surprizing that the capacity of possibilistic logic to handle
non-monotonic reasoning resides in its ability to inhibit the least entrenched pieces of information
in partiaily inconsistent knowledge bases, as explained in section 4. Finally, section 5 shows that
possibilistic reasoning is also in agreement with the idea of minimizing abnormality in
commonsense reasoning.

N.B.: Proofs, details and examples are omitted in this extended abstract for the sake of brevity.

2 - Necessity measures and their qualitative counterpart

Let B be : (finite) Boolean algebra of pi'opositions (denoted by a, b, ¢, ...), equipped with
an ordering relation 2; a > b means "a is at least as certain as b". By definition the relation >
satisfies the following requirements (Dubois, 1986, 1988), for any a, b and ¢

Al e reflexivity a2a

A2+ completeness a2b or b2a

A3 e transitivity ifa2bandb>cthena>c¢c

A4 < non-triviality 1> O, where 1 (resp. : O) is the greatest (resp. : least)

elementin 3B, and a2 > b means "a 2 b and not (b = a)"

A5 -« certainty of tautology 12a

A6 - stability under conjunction Va,if b>cthenaAab=anc

Such a relation is called a "qualitative necessity measure”. The associated qualitative possibility

measure 1s defined by = with a5 b if and only if —b 2 —a and reads "a is at least as possible as
bh".



A (numerical) necessity measure (see Dubois and Prade, 1988) is a mapping N from 3B to
the real interval [0,1] such that

N@®)=0,N(1)=1
and Va, Vb, N(a A b) = min(N(a), N(b))

A straightforward consequence is that Va, min(N(a), N(—a)) = 0. A dual possibility measure ][] is
defined from N by Va, [I(a) = 1 - N(—a). Clearly [T is such that [I(©) =0, [I(1) = 1 and Va,

Vb, [1(a v b) = max([1(a), II(b)), i.e. IT is a possibility measure in the sense of Zadeh (1978).

N.B. : We do not have Va, Vb, N(a v b) = max(N(a), N(b)) but only N(a v b) 2 max(N(a),
N(b)). Forcing the equality for all a and b entails that N is just a standard truth assignment

function, i.e. such that Va, N(a) = 1 cr N(a) = 0.

A function g from 3 to [0,1] is comp itible with an ordering relation > on 3 if and onlyifa > b

< g(a) 2 g(b).
Then the following resuits hold in finite settings :
* A qualitative necessity measure is compatible with g if and only if g is a necessity measure.

Particularly, A1-A6 implya.. (a A b) assoonas b>a, wherea _ bmeans "a>band b>2a".

* Let — be the partial ordering of B (induced by the Boolean structure) then b—a=>a>b and

ash.

- If 2 is compatible with N then 5 is compatible with [T(.) =1 - N(—.), i.e. the dual possibility
measure.



3 - Epistemic entrenchment and qualitative necessity measures

Epistemic entrenchment is a way of assigning priorities to sentences in a knowledge base in
order to facilitate revision and contraction of the base. It is modelled by an ordering rciation
between the sentences : a < b means "b is at least epistemically entrenched as a". The relationship
between the epistemic entrenchment relation (Girdenfors and Mackinson, 1988) and necessity
measures is now clear. Indeed transitivity is in both notions ; maximality (if b < a for all b, then

+—a) is AS, dominance (if a — b then a < b) is a consequence of A1-A6 ; conversely completeness
(A2) is a consequence of epistemic entrenchment axioms. Dominance and conjunctiveness (for any

aandb,a<aAborb<aAab)imply a~a A b (if b2 a) which is equivalent to A6 if A5 is
accepted as well. Although starting with different axioms and different motivations, the same kind
of relation is obtained. ‘

4 - Dealing with uncertain knowledge bases

In Dubois and Prade (1987), the re solution principle has been extended into

N@avbza

N(-—|a Vv C) 2 B

N(b v ¢) 2 min(a,B)

and the particularization rule into

N(Vx, p(x)) 2 o

N(p(a)) 2 «

An uncertain knowledge base is a set X = {(C; ;) 1= 1.n, & >0} where o4 1s a lower



bound on N(C;) where C; denotes a clause. K is consistent with respect to necessity measures if

and only if the set of ordinary clauses {C; | (C; oy) € X} is consistent in the usual sense ; this is

equivalent to not being able to deduce © from K using the'extended resolution, such that
N(O) > 0. Then using a refutation method (Dubois and Prade, 1987) we can produce the best
lower bound of the necessity of any proposition p to evaluate with respect to K (the refutation

method consists in adding (—p 1) to X and any weight attached to a derived empty clause is a
lower bound of the necessity of the refuted proposition). Then it can be proved that

if X —N@p)2a

then X U {(Cp+1 0p41)} — N(p) 2B

with § > a, provided that X U ((Ch41 @p41)} remiins consistent. This a monotonic

behaviour.

A semantic has been defined for clauses weighted by lower bounds of a necessity measure
(Dubois, Lang and Prade, 1988). If p is a closed formula, .M(p) the set of the models of p, then

the models of (p ®) will be defined by a fuzzy set M(p o) with a membership function

HMp o) =1ifTe M(p)

=1-aifle M(=p).

Then the fuzzy set of the models of a knowledge base K = {C*[, C*, ..., C*,},

where C*j is a closed formula with its weight, will be the intersection of the fuzzy sets M(C*;),

Le. Unvi( X (D = minj=

ot

n HM(C"‘i)(D- The consistency degree of X will be defined by

&y = mMaxy Lv( ff@)(I) : it estimates the degree to which the set of models of X is not empty.

The quanmty Inet X0 =1 - ¢(2<) will be cailed degree of inconsistency of %

By contrast, when X is not fully consistent but only consistent to the degree 1 -a < 1, i.e.



X is a-inconsistent, there is room for non-monotonicity (see Dubois, Lang and Prade, 1988).
When X is a-inconsistent, i.e. N(©) 2 a > 0, it is sdll possible to infer non-trivial conclusions
from X, namely all consequences p of K such that N(p) 2 B > o, using resolution and
refutation on K U {(—p 1)}. Indeed, if B > a, there exists a consistent sub-base S of K. from
which we can infer (p ) by resolution, and then we will consider the proof of (p B) as valid
since, this refutation uses only clauses whose necessity degree is greater or equal to 3, i.e. strictly
greater than a.. Everything occurs as if all pieces of information (b ¥) with ¥ Sa were

occulted, and the proof paths only consider {(b B)e K IB>a} as the actual knowledge
base (it is a consistent one !). In the terminology of entrenchment, the least entrenched pieces of
information are inhibited, only a maximal consistent sub-base of strongly entrenched pieces of
information remain. The relationship between the non-monotonic behavior of partially inconsistent

possibilistic knowledge bases and revision processes as studi :d by Gérdenfors and Mackinson
(1988), will be investigated.

5 - Minimizing abnormality

A clause like (—p(x) v q(x) @), once instanciated on a particular x, say a, means N(—p(a) v
q(2)) 2 a.. In other words, it expresses that there is a possibility at most equal to 1 -

(i.e. [T(p(a) A =q(a)) £ 1 - @) that a particular x is an exception of the rule "if x satisfies p, then it
satisties q". Another way of handling a rule with (potential) exceptions is to introduce an
abnormality predicate, say "ab", specific of the rule, and to state the totally certain rule

(—p(x) v q(x) v ab(x) 1)

Les Tk osausties p, it satisties g or it is abnormal”, and to add to the knowledge base the default
assumption

(--1ab(x) a)



i.e. Va, N(—ab(a)) 2 a (we are at least certain at degree a that a given x is not a priori abnormal).
Then the extended resolution principle recalled in section 3 enables us, from the weighted clauses

(—=p(x) v q(x) v aby(x) 1)
(p(x) v r(x) v aby(x) 1)
(—ab1(x) a)

(—abz(x) B)

to derive the weighted clause

(q(x) v r(x) min(c,B))

Thus we obtain the same results that the one we can get starting with the weighted clauses

P(x) v q(x) ) and (p(x) v r(x) B). Then the search for the largest weight attac 1ed to a derived
smpty clause in a refutation procedure will correspond to try to obtain the empty ¢ lause using only

the most certain clauses of the form (—abj(x) ), i.e. maximizing the normality or equivalently

minimizing the abnormality.

However an advantage of this approach is that we can express relations between abnormality
predicates. We may for instance have the following piece of information

(—aby(x) v aba(x) ¥)

which means that if x is an exception to rule 1, it is generally an exception to rule 2. Then we can
minimize a contextual abnormality (provided that the corresponding knowledge is available) as
advocated by Pearl (1987) in the case of conditional probabilities, rather than simply minimizing
all ubnormal events.
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