EXTENSION OF CONSONANT BELIEF FUNCTIONS DEFINED ON AN ARBITRARY NONEMPTY CLASS OF L-FUZZY SETS*

ZHANG GUANG-QUAN

Department of Physics,

Hebei University,

Baoding, Hebei, China

Abstract

The concepts of consonant belief function and B-consistency of set function defined on L-fuzzy sets are introduced and the results analogous to [1] are obtained.

Keywords: L-fuzzy set, Consonant belief function,
B-consistency of set function.

In this paper, let X be a nonempty set, $F_L(X) = \{\underline{A}; \underline{A}: X \rightarrow L$, Lis a complete lattice $\}$, and C* be an arbitrary nonempty subset of $F_L(X)$, μ be a mapping from C* into the unit interval $\{0, 1\}$, and we make the following convention: $\bigcap \{\cdot\} = X$, sup \emptyset $\{\mu(\cdot)\} = 0$, $\inf \{\mu(\cdot)\} = 1$.

Definition 1. A consonant belief function on $F_L(X)$ is a non-negative real valued set function $\beta: F_L(X) \longrightarrow [0, 1]$ with the property:

$$\beta(\bigcap_{t\in T}\underline{A}_t) = \inf_{t\in T}\beta(\underline{A}_t), \text{ whenever } \{\underline{A}_t; t\in T\} \subset F_L(X),$$

where T is an arbitrary index set.

Definition 2. μ : $C^* \longrightarrow [0, 1]$ is called B-consistent, if for every $\{\underline{A}_t; t \in T\} \subset C^*$, $\underline{A} \in C^*$, with $\underline{A} \supset \bigcap \underline{A}_t$, we have $t \in T$

$$\mu(\underline{A}) \geq \inf_{t \in T} \mu(\underline{A}_t),$$

where T is an arbitrary index set.

Theorem 1. μ can be extended to a consonant belief function on $F_L(X)$, if and only if μ is B-consistent.

Proof. Necessity. Obvious.

Sufficiency. If we define

$$\beta: F_{L}(X) \longrightarrow [0, 1]$$

$$\underline{\underline{B}} \xrightarrow{\inf} \sup_{\mathbf{x} \in \mathbf{X}(\bigcap \underline{\underline{E}}_{\mathbf{S}})(\mathbf{x}) \leq \underline{\underline{B}}(\mathbf{x}) \mathbf{s} \in \mathbf{S}^{\mathbf{X}}} \inf_{\mathbf{\underline{E}}_{\mathbf{S}} \in C^{*}} (1)$$

where S^X is an arbitrary index set, then β is a consonant belief function on $F_L(X)$, and a extension of u on C*. To conclude the assertions, we first prove that β is a consonant belief function. In fact, the monotonicity of β is obvious. By the monotonicity of β , we have, for every $\{\underline{A}_t;\ t\in T\}\subset F_L(X)$,

$$\beta(\underline{A}_{t}) \geq \beta(\underbrace{\bigcap_{t \in T} \underline{A}_{t}}),$$

and hence

$$\inf_{t \in T} \beta(\underline{A}_t) \geq \beta(\bigcap_{t \in T} \underline{A}_t),$$

where T is an arbitrary index set.

On the other hand, 1) when for every $x \in X$, $t \in T$ there ex-

ists $\{\underline{E}_{S}; s \in S^{X}\} \subset C^{*}$ such that

$$(\bigcap_{s \in S} \underline{E}_s)(x) \leq \underline{A}_t(x)$$

and for any $\xi > 0$

$$\sup_{\substack{(\bigcap_{s \in S_t} \underline{E}_s)(x) \leq \underline{A}_t(x) s \in S_t}} \inf_{\mu(\underline{E}_s) \leq \inf_{s \in S_t} \mu(\underline{E}_s) + \mathcal{E},$$

then, since

$$(\bigcap_{t\in T} \bigcap_{x\in S_t} \underbrace{\mathbb{E}}_{s})(x) \leq \bigwedge_{t\in T} \underbrace{\mathbb{A}_t(x)} = (\bigcap_{t\in T} \underbrace{\mathbb{A}_t})(x),$$

we have

$$\inf_{\substack{t \in \mathbb{T}(\bigcap \underbrace{E_s}) (x) \leq \underline{A_t}(x) s \in S_t^{x|} \\ s \in S_t^{x}}} \sup_{\substack{\underline{E_s} \in \mathbb{C}^*}} \inf_{\substack{t \in \mathbb{T} \\ \underline{E_s} \in \mathbb{C}^*}} \inf_{\substack{t \in \mathbb{T} \\ t \in \mathbb{T}}} \inf_{\substack{t \in \mathbb{T} \\ s \in S_t^{x|}}} \mu(\underline{E_s}) + \varepsilon$$

$$=\inf_{\substack{s\in \cap S_t^{X_i}\\t\in T^t}} \mu(\underline{E}_s) + \xi \stackrel{\angle}{=} \sup_{\substack{s\in S_t^{X_i}\\s\in S_t^{X_i}}} \inf_{\substack{t\in T}} \mu(\underline{E}_s) + \xi,$$

this shows that

$$\inf \inf_{\mathbf{x} \in \mathsf{X} t \in \mathsf{T}(\bigcap_{\mathbf{S} \in \mathsf{S}} \underline{\mathbb{E}}_{\mathbf{S}})(\mathbf{x}) \leq \underline{\mathsf{A}}_{\mathsf{t}}(\mathbf{x}) \mathbf{s} \in \mathsf{S}_{\mathsf{t}}^{\mathsf{X}^{\mathsf{t}}}} \\ = \underbrace{\mathbb{E}}_{\mathbf{S}} \in \mathsf{C}^{*} \\ \leq \inf_{\mathbf{x} \in \mathsf{X}(\bigcap_{\mathbf{S} \in \mathsf{S}} \mathbf{x}} \underbrace{\mathbb{E}}_{\mathbf{S}}(\mathbf{x}) \leq (\bigcap_{\mathbf{A}} \underline{\mathsf{A}}_{\mathsf{t}})(\mathbf{x}) \mathbf{s} \in \mathsf{S}^{\mathsf{x}}} \\ = \underbrace{\inf_{\mathbf{x} \in \mathsf{X}(\bigcap_{\mathbf{S} \in \mathsf{S}} \mathbf{x}} \underbrace{\mathbb{E}}_{\mathbf{S}} \in \mathsf{C}^{*}}_{\mathbf{E}_{\mathsf{S}} \in \mathsf{C}^{*}} (\mathbf{x}) \leq (\bigcap_{\mathbf{A} \in \mathsf{A}} \underline{\mathsf{A}}_{\mathsf{t}})(\mathbf{x}) \mathbf{s} \in \mathsf{S}^{\mathsf{x}}} \\ = \underbrace{\operatorname{C}}_{\mathbf{X}} \underbrace{\mathbb{E}}_{\mathbf{S}} \in \mathsf{C}^{*} \underbrace{\operatorname{C}}_{\mathbf{X}}^{\mathsf{t} \in \mathsf{T}} (\mathbf{x}) \leq (\bigcap_{\mathbf{A} \in \mathsf{A}} \underline{\mathsf{A}}_{\mathsf{t}})(\mathbf{x}) \mathbf{s} \in \mathsf{S}^{\mathsf{x}}}_{\mathbf{X}}$$

2) When there exists $x_0 \in X$, $t_0 \in T$, for every $\{\underline{E}_s; s \in S_{t_0}^{x_0}\}$ $\subset \mathbb{C}^*$ such that

$$(\bigcap_{s \in S} x_o \underline{E}_s)(x_o) \not = \underline{A}_{t_o}(x_o),$$

by using $\inf\{\mu(\cdot)\} = 1$, $\sup\{\mu(\cdot)\} = 0$, (*) is also true.

It yields that

$$\inf_{t\in T} \beta(\underline{A}_t) \leq \beta(\bigcap_{t\in T} \underline{A}_t).$$

Consequently,

$$\inf_{t \in T} \beta(\underline{A}_t) = \beta(\underline{A}_t),$$

which means β is a consonant belief function.

Next, we prove that β is an extension of u on C*. In fact, for every $\underline{B} \in C^*$, we have

$$\beta(\underline{B}) = \inf_{\mathbf{x} \in \mathbf{X}(\bigcap_{\mathbf{S}} \underline{\mathbf{E}}_{\mathbf{S}})(\mathbf{x}) \leq \underline{\mathbf{B}}(\mathbf{x}) \mathbf{s} \in \mathbf{S}^{\mathbf{x}}} \inf_{\mathbf{H}(\underline{\mathbf{E}}_{\mathbf{S}})} \geq \inf_{\mathbf{x} \in \mathbf{X}} \mu(\underline{B}) = \mu(\underline{B}).$$

On the other hand, for any $\xi>0$, every $x\in X$ there exists $\{\underline{E}_S;\ s\in S^X\}\subset C^*$ such that

$$\underline{B}(\mathbf{x}) \geq (\bigcap_{\mathbf{s} \in S} \underline{\mathbf{E}}_{\mathbf{s}})(\mathbf{x}) \geq (\bigcap_{\mathbf{s} \in \bigcap_{\mathbf{x} \in X}} \underline{\mathbf{E}}_{\mathbf{s}})(\mathbf{x}),$$

and

$$\sup_{\mathbf{s} \in S^{\mathbf{X}}} \inf_{\underline{E}_{\mathbf{S}}} \mu(\underline{E}_{\mathbf{S}}) \stackrel{!}{\leq} \inf_{\mathbf{s} \in S^{\mathbf{X}}} \mu(\underline{E}_{\mathbf{S}}) + \mathcal{E},$$

$$\lim_{\mathbf{s} \in S^{\mathbf{X}}} \underline{E}_{\mathbf{S}} \in \mathbb{C}^{*}$$

hence, by using the B-consistence of μ ,

$$\beta(\underline{B}) = \inf_{\mathbf{x} \in \mathbf{X}(\underbrace{\cap \underline{E}_{\mathbf{S}})(\mathbf{x}) \leq \underline{B}(\mathbf{x})} \inf_{\mathbf{s} \in \mathbf{S}^{\mathbf{X}}} \mu(\underline{E}_{\mathbf{S}})$$

$$\underline{E}_{\mathbf{S}} \in C^{*}$$

$$= \inf_{\mathbf{x} \in \mathbf{X} \mathbf{s} \in \mathbf{S}} \mathbf{\mu}(\underline{\mathbf{E}}_{\mathbf{s}}) + \mathcal{E} = \inf_{\mathbf{s} \in \mathbf{\Lambda}} \mathbf{s}^{\mathbf{\mu}}(\underline{\mathbf{E}}_{\mathbf{s}}) + \mathcal{E} \neq \mathbf{\mu}(\underline{\mathbf{E}}) + \mathcal{E},$$

therefore

$$\beta(\underline{B}) \leq \mu(\underline{B}).$$

Consequently,

$$\beta(\underline{B}) = \mu(\underline{B}),$$

and we complete the proof of the theorem.

In usual case, the extension of a mapping μ with B-consistent from an arbitrary nonempty class of the L-fuzzy subsets of X into the unit interval [O , 1] to a consonant belief function on $F_L(X)$ may not be unique. All extensions of consonant belief function is denoted $E_\beta(\mu)$. By using theorem 1, we know that $E_\beta(\mu)$ is nonempty, if μ is B-consistent.

For two mappings $\mu_1\colon F_L(X) \longrightarrow [0\ ,\ 1]$ and $\mu_2\colon F_L(X) \longrightarrow [0\ ,\ 1]$, we define ordering relation " \leq ":

 $\mu_1 \leq \mu_2$ if and only if $\mu_1(\underline{A}) \leq \mu_2(\underline{A})$, for every $\underline{A} \in F_L(X)$. It is easy to prove that " \leq " is a partial ordering relation on $E_\beta(\mu)$. Therefore the greatest lower bound of μ_1 , $\mu_2 \in E_\beta(\mu)$ can be defined by

 $(\inf\{\mu_1\ ,\ \mu_2\})(\underline{A}) = \mu_1(\underline{A}) \wedge \mu_2(\underline{A}), \text{ for all } \underline{A} \in F_L(X).$

Theorem 2. $(E_{\beta}(\mu), \neq)$ is a lower semi-lattice, and the extension β defined by (1) is the least element of $E_{\beta}(\mu)$. Proof. 1) Obviously, $(E(u), \neq)$ is a lower semi-lattice. 2) The extension β defined by (1) is the least element of the $E_{\beta}(\mu)$. For arbitrary $\beta \in E_{\beta}(\mu)$, $\underline{B} \in F_{\underline{L}}(X)$, we define

$$\underline{F}_{\mathbf{X}}(y) = \begin{cases} (\bigcap_{\mathbf{S} \in S} \mathbf{x} \underline{E}_{\mathbf{S}})(\mathbf{x}) \leq \underline{\mathbf{E}}(\mathbf{x}) & \text{if } \mathbf{y} = \mathbf{x}; \\ \underline{E}_{\mathbf{S}} \in \mathbb{C}^* \\ 0 & \text{if } \mathbf{y} \neq \mathbf{x}, \end{cases}$$

for every $x \in X$. If $\underline{B}(x) \ge (\bigcap_{s \in S} \underline{E}_s)(x)$, $\underline{E}_s \in C^*$, we have

$$E_{x} \supset \bigcap_{s \in S} E_{s}$$

hence

$$\beta'(\underline{F}_{x}) \geq \inf_{s \in S} \chi \beta'(\underline{E}_{s}),$$

therefore

$$\beta'(\underline{F}_{x}) \stackrel{\geq}{=} \sup_{\substack{S \in S \\ S \in S}} \sup_{x \in S} \inf_{x \in S} \beta'(\underline{E}_{s})$$

$$= \underbrace{E_{s} \in C^{*}}_{\substack{S \in S \\ S \in S}} \sup_{x \in S} \inf_{x \in S} \mu(\underline{E}_{s}),$$

$$\underbrace{E_{s} \in C^{*}}_{\substack{S \in S \\ S \in S}} \stackrel{\text{inf}}{=} \mu(\underline{E}_{s}),$$

for every $x \in X$, it follows, by using

$$\underline{\underline{P}}(x) \geq \sup_{\substack{(\bigcap \underline{F}_{x})(x) \leq \underline{P}(x) \\ s \in S}} (\bigcap \underline{E}_{s})(x) \leq \underline{\underline{P}}(x) \sup_{s \in S} (\bigcap \underline{F}_{x})(x) = \underline{\underline{F}}_{x}(x) \geq (\bigcap \underline{F}_{x})(x),$$

that

$$\beta(\underline{B}) = \inf_{\mathbf{x} \in \mathbf{X}} \sup_{\mathbf{x} \in \mathbf{S}} \inf_{\mathbf{x}} \mu(\underline{\mathbf{E}}_{\mathbf{s}}) \leq \inf_{\mathbf{x} \in \mathbf{X}} \beta'(\underline{\mathbf{F}}_{\mathbf{x}})$$

$$\underline{\mathbf{E}}_{\mathbf{s}} \quad C^*$$

$$= \beta'(\underbrace{\mathbf{F}}_{\mathbf{x}}) \leq \beta'(\underline{B}).$$

References

- [1] Wang Zhenyuan, Extension of Consonant Belief Functions Defined on an Arbitrary Nonempty Class of Sets, Fuzzy Systems and Mathematics, 1(1987), 66-70.
- [2] Liu Guiting and Wang Zhenyuan, Extension Theorem of Consonant Belief Function, Kexue Tongbao, 9(1985), 718.

- [3] G. Banon, Distinction Between Several Subsets of Fuzzy Measures, Fuzzy Sets and Systems, 5(1981), 291-305.
 - [4] Zhang Guangquan, Semi-lattice Structure of All Extensions of Possibility Measure and Consonant Belief Function on the Fuzzy Set, BUSEFAL, 33(1987), 95-103.
- [5] Zhang Guangquan, The Extensions of A Class of Sc-fuzzy Measure, Hebei University, 3(1987), 11-17.
- [6] G. Shafer, A Mathematical Theory of Evidence, Princetion University Press, Princeton, NJ, 1976.
- [7] Wang Zhenyuan and Zhang Zhipeng, On the Extension of Possibity Measures, BUSEFAL, 18(1984), 26-32.

^{*} This research is supported by National Natural Fund of China