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SUMMARY

In thia papen in anden to otablich Ssaundo fon amsenage

prababity in the fuggy di iminati prablem the "$¥nfarvnation Enengy

an {uypyy clasces and exact infamation” the "3¥nfonmatian Enengy an
exact clacceo and fuyygy infavmation” and the "$nfarunation 8nengy an
fuyyy clacces and fuyyy inforumation”  ane considened. Theae cancepts
ane inopined in the measune of infaunation "#nfonmation Enengy"
inthaduced in ¥nforunation Theony by Onicescu (1966).

1.~ INTRODUCTION

Consider the classical discrimination problem which 1is con-
cerned with the assignement of a given object to one of n known clas-
i/ i=1,...,n} be a

discrete random variable , associated with a finite set of hypothesis

ses of its observed characteristics . Let C= {C

Hi' The uncertainty about the true class is expressed by the prior
probability vector P(C)=(P(C1),...,P(Cn)), wherg P(Ci) represents the

prior probability of the class Ci’ P(Ci)zo and Z P(Ci)=1. Let x be an
i=1
observation on the probabilistic information system X, where X is

distributed according to one of n possible conditional density func-
tions f(x/Ci), when Ci is the true class. These conditional probabi-
lities , along with the prior distribution on C, determine:The joint
probability distribution, p(Ci,x), (i=1,...,n, xeX ); the marginal
probability disribution on X, f(x) and the posterior distribution on
C, p(Ci/x) (i=1,...,n).

It is known that the decision rule which minimizes the pro-

bability of error is the Bayes decision rule which assigns x the class



with the highest a posterior probability. This rule leads to a proba-
bility of error which is given by 1-m§x p(Cl/x) .Prior to observing
X, the probability of error, Pe’ associated with X 1s defined as1 Pe=
1—Ex(max p(Ci/x)), where Ex is the expectation with respect to X.

Tanaka,, Okuda and Asai (13) formulate the discrimination
problem with fuzzy classes and fuzzy information using the probabili-
ty of fuzzy events and derive a bound for the average error probabili-
ty , when the decision in the classifier is made according to the fu-
zzified Bayes method . They consider the following cases: (a) Fuzzy
classes and exact information, (b) Exact classes and fuzzy information

(c) Fuzzy classes and fuzzy information.

In this paper , in order to stablish a bound for average
error probability, when the decision in the classifier is made accor-
ding to the fuzzified Bayes method, the " Information Energy in fuzzy
classes and exact information", the "Information Energy in exact clas-
ses and fuzzy information" and the "Informition Energy in fuzzy clas-
ses and fuzzy information" are considered. These concepts are inspired
in the measure of information "Information Energy " introduced in In-
formation Theory by Onicescu (7) but they have a meaning quite diffe-
rent from the one of Onicescu’s Information Theory, since they inte-
grate on the one hand the information in a moment before carrying out
an experiment and on the other hand the uncertainty of meaning of

fuzzy sets which it is expressed by the membership function.

2.- EXACT CLASSES AND FUZZY INFORMATION

In this section we consider the discrimination problem, when we
have exact classes C={ Cl""’cn} and the available experimental
information on which these conclusions will be based is not exact, but
rather it may be described by means of fuzzy events on the space X;
i.e., we asume that the ability to observe the experimental outcome
only allows the statistician to assimilate each elementary observable
event with fuzzy information (14), where

Definition 2.1

A fuzzy information X from X is a fuzzy event on X which is
characterized by a Borel-measurable membership function Ho from X to

[(0,1] where “I(X) represents the "grade of compatibility of x in X.



In the definition of measures of information associated with an
experiment when the available experimental information is given by
grouping of experimental observations, the set of all elementary
events associated with the experiment is a classical partition of the
sample space. In a similar way and for the sake of operativeness, we
will hereafter assume that the available "elementary observable
events" determine a partition of fuzzy sets on the sample space or
"fuzzy partition" which is called fuzzy information system according

to the notion introduced by Tanaka et al. (14):

Definition 2.2

A fuzzy information system I*, assocliated with X 1s a fuzzy par-
tion (orthogonal system) of X by means of fuzzy informations X from
T, that is, ) Jo () =1, VxeX

XeX

As the attention is focussed on the classe C1 governing the dis-
tribution of the exact information from X, but the present available
information 1is fuzzy, it would be interesting to obtain the

probabilistic definition stated by Zadeh (15) as follows.

Definition 2.3

The probabilty of fuzzy information X given the classe Ci is
defined by

Pl/C,) = IX Hy (%) £(x/C,) dT(x)

As we assume the existence of a prior probability on C we can

introduce the following probability distributions:

Definition 2.4

*
The marginal probability distribution on X of the fuzzy

information X is given by

P(X) =f o (x) £(x) dr(x)
X



Definition 2.5

»
The posterior probability distribution on C given X € X is given
by

n
J' o (x) £(x/C.) dr(x)
X izl X 1

?(Ci/X) =
?X)

Let us consider the problem of classifying a fuzzy observation X
1""Cn' In this case , the
fuzzified Bayes method consists in evaluating the posterior
probability ?(Ci/I) and assigning the fuzzy observation X to the class
C, 1=r =n for which ?(ci/x) is maximal. This decision rule leads

r
to a a probability of error given by

as coming from one of n possible classes C

P,=1- z . m?x P(C,/X) P(X)
XeX

Now we stablish a bound for Pe .First, we stablish the following
definitions :

Definition 2.6

The Conditional Information Energy of C given by the fuzzy

information X is

€ (P(C/x)) =

2
[ P(C,/T) ]
i

W1

1

Definition 2.7

The Conditional Information Energy of C given the fuzzy
»*
Information system X is

€ (X .C) = § 8( P 2
Iex*

Now, we present a theorem giving upper and lower bounds on proba-

bility of error.



Theorem 2.1
T T o=
Let &(X ,C) be the conditional information energy of C given the
*
fuzzy information system X . Then it is verified

(1/2) (1-8(X",C) = P, = (1-8(X",C))

Proof
- *
First we stablish that Pe =< 1- &(X ,C). In fact

»*
1-8(X ,C) = 1- Z
%
XeX i

2
[?(cixzx)] P(X) =
1

n r~1s

2
[sp(ci/x)} ?m] = 1. [1- max 7(Cy/%) ]?(:x) =P,
1 YeX

"
o~
»
—
0
n ~1s

*
It is easy to prove that O0s&(X ,C)=1. If Osx=1, it follows that

x+152x7%, hence (1/2) (1-x)s1-x}"2 (1)

From inequality (1) it follows that

- - 1/2
(1/2)(1- €x",C)) = 1- [e(:x ,C)]
If we prove that

, 172
1—[8(:x ,C)] s P,

we obtain the result of theorem 2.1. First we note that

n 2 172 1/2
max P(C,/X) = [ ) [?(c /%) ] - [e(?(cxx)) ] 2)
i 1 sl 1

Multiply both sides of inequality (2) by P(X) and summing on both

*
sides on X , we have

1-P = z € (P(cr1))V2. (1)
e »
TeX

Now, let Z be a discrete random variable taking on the values
& (P(C/X)) with probabilities P(X) and consider the convex function
172 ‘
g(x)=x"% then



E(2) = Z & (P(C/X)) . P(X)
»
XeX 12
. g(E(2)) = [ & (P(C/x) ]

We may now aply Jensen’s inequality to obtain

. 172
1 - Pe s [ & (X ,C) ]

»
Tanaka, Okuda and Asai prove the following relation : Pe s X(X ,C),

where,

?(Ci/I) log_ ?(Ci/I) P(X)

(X ,C) = - )
o 15

Xe

-1

* i

»
In the following theorem, we study the relation between H(X ,C) and
#*
&(Xx ,C) .

Theorem 2.2

»* »
logae Pe =(1-8>,C)) loga e < (X ,C)

Proof

The function g(x)=logax is strictly concave on (0,w). The line
tangent to 1ogax at x=1 is (x-l)logae and verifies
(x—l)logae = log_x (1)

and the inequality being strict for all x=#1. Now put x=?(Ci/1), we

have

-1
?(ci/x)—1 2 loga?(Ci/I) (1oga e)  (2)

multiply both sides inequality (2) by -?(Ci/X), it follows



2 -1
-[?(Ci/f)] + ?(Ci/I) z —?(Ci/X) loga?(Ci/x) (1ogae) (3)

summing this last inequality on both sides over 1, we have

n n
1- [?(c /:x)]"‘ < -V P(C./%) 1log P(C./X) (log.e)™ (4)
izl i izl i a i a

Multiply both sides of inequality (4) by P(X) and summing on both

*
sides on X , we obtain

1ogae(1—s’(:x*C) < H(X,C)

On the other hand, by theorem 2.1 it is verifled that
#*
Pe =1 - 8&lI@,C)
then
*
log e P_ = (1- 8(X ,0)) log_e

3 .- FUZZY CLASSES AND EXACT INFORMATION

In this section we deal with the discrimination problem when the
available experimental information is exact and we have fuzzy classes.
It is reasonable that we consider the fuzzy class set 8* consisted of
all ﬁi,rather than the set of exact classes C, where each 61 is
expressed by our interested words on C . Here a fuzzy class Gi is
defined by a membership function ugl(c
of compatibility of C

), whose value means the grade

J

j on Gi, and it is assumed that

iilugx(cj) =1 V j=1,..,n
In this case, the fuzzified Bayes method consists in evaluating
the posterior probability ?(ﬁi/x) and assigning the observation x to
the class 8, 1= r = k, for which ?(Gi/x) is maximal where ?(Gi/x) is
given by

. K
Pgl/x) = — u1(C.) £(x/C.) p(C,)
£(x) JZI € J J

This decision rule leads to an average probability of error given

by



* i
P =1 -I max P(€1/x) £(x) dr(x)
€ X

*
Now we stablish bounds for Pe.In order to do so, let us introduce the

Conditional Information Energy concept of © .

Definition 3.1

*
The Conditional Information Energy of & given the observation x

is

*
E(x,6 ) =
i

ne-1=

[ ?(gi/x)2 + ?(@i/x)z]
1

Definition 3.2

»*
The Conditional Information Energy of € given the probabilistic

information system X, is

-1~

£(X,68) = f

[:P(r;i/x)2+ ?(éixx)Z] £(x) dr(x)
X i

1

Pardo et al. (12), explaining the meaning of the "Informational
Energy of the fuzzy state space ", emphasize that it incorporates fuz-
ziness and randomness. Nevertheless, this measure does not try to ge-
neralize Onnicescu’s Informational Energy but rather it generalizes,
in certain a sense the nonprobabilistic non fuzziness measures (Pardo

(8) ).

Now, we present a theorem giving upper and lower bounds of proba-
bility of error.

Theorem 2.1

»* *
Let &(X,€ ) be the conditional information energy of € given the
probabilistic information system X, then bounds by the average

*
probability of error, Pe, assocliated with X are given by
3 * Y12 * *
(1/k)[k-1-[1—(k-1) “k(k-1)E(X, € )] ]s P. s [k—s(x,e ) ] (1/2)

Proof

It is easy to prove that



1=

[ Pet/x)? + ?(éi/x)z] < 2 max P(€L/x)% + k - 2 (1)
i=1 i
Taking the expectation with respect to x on both sides of inequality
(1) yields
#* *
€ (X,6) =2 (1—Pe } +K =2
hence

* »*

On the other hand, if we denote

P8 /x) = max ?(@i/x)
i

it follows that

k . k k 2
) [ P(el/x)2 + P& /x)2 ]=?(€r/x)2 ) P2 + ) [1 - ?(ei/x)]
i=1 i=1 i=1
i#r
Using the following inequalities

k 2 2
Z [ 1 - ?(gi/x) ] z ﬁ—E—i—ll
i=1

k r 2
?(gi/x)z > (1 -P(@ /x))
k-1
i=1
i#r
we have the following inequality

k . s 2 _ r 2
) [ pEl/x)? + p(EL/0? ] > P72« B, (12 PLE A1)
i=1

If we denote y = P(€"/x), we obtain

. v2 k (k-1) + (k=1)%+(1-y)%k  y2 k% - 2ky + k + (k-1)
& (x,8 ) = =

k (k - 1) k (k - 1)

3

Hence,

»*
Wy -2ky+k+ (k-1)°-k (k-1) B(x,8 ) 5 0

Solving the last inequation we derive



1 - max P(el/x) =

3 . 172
[ k-1 -[1—(k-1) - k(k-1) &€(x,6 )] ] (2)
i

C )

If we take the expectation with respect to x on both sides of
inequality (2), it follows from Jensen’s inequality that

* 1 3 * Y172
Pe z — [ k-1 —[1 -(k-1)" - k -k (K-1) € (X,€ )] ]
k

Tanaka, Okudaa and Asai (14) prove the following relation

* »
P = X(X€)
e

where,

RK,€) = - I

k
[ Z [ ?(Gi/x) loga ?(81/X)+?(§}x) loga?(éi/x)]f(x)dt(x)
X

i=1

»* *
Now we stablish the relationship between &(X,6 ) and H(X,€ ) .

Theorem 3.2

* * *
2 P log e = (k - 8(X,8 )) log e = X, € )

Proof

By inequality (1) of theorem 2.1, now we can stablish that

PEl/x) -1 = log_ P(8'/x) (loge)™" (1)

?(éi/x) -1z log, ?(éi/x) (logae)-1 (2)
Multiply both sides of inequality (1) by -?(Gi/x) it follows
- ?(@i/x)2 + ?(ﬁi/x) =< - ?(@i/x) log ?(Gi/x) (1oga e71 (3)
Similarly we have,
- ?(E’i/x)2 + ?(Ei/x) = - ?(Ei/x) loga ?(éi/x) (logae)_1 (4)

Summing these last inequalities on both sides over i we obtain



K 1 2 i i
1 - 2: P(E/x)¢ < - P(8"/x) log, P(8/x) ( logee) (5)
=1 i=1

~

k =1 2 X =1 =1
k- 1 -; PE/x)% s - | P& /x) log, P(B/x) (log.e) (6)
a a
=1 i=1
Summing inequalities (5) and (6) we have

k
k- ¥ [ pgl/x)2 + p(8l/x)2 ] »
121

1 -1 (& g i
- ogae) Z P8 /x) loga?(t‘? /x) +
i=1

i~

P (&'/x)1og P (BL/x) ] (7)

i=1

Taking the expectation with respect to x on both sides of inequality
(7) we obtain

»* »
log e (k - & (X,8) s ®(X,6 )
On the other hand , by theorem 3.1 it is verifies

* »*
2P =k - 8(X,€)
then
»* »*
2 Pe 1ogae = (k- 886) logae

The conceps and results established in the precedent sections
allow us to extend notions and results to the case "Fuzzy classes and
fuzzy information" . Hovewer, due to the analogy of this case with the

precedent cases we not include the development.
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