ERGODIC THEOREMS ON FUZZY QUANTUM SPACES

Anna TIRPAKOVÁ

Archaelogical Institute of the Slovak Academy of Sciences, CS - 949 21 Nitra - hrad, Czechoslovakia

In this paper, we present a generalization of the individual ergodic theorem. It deals with a continuation of results of ergodic theory for fuzzy quantum spaces [3].

Now, we introduce the notions which we shall use in the following.

By a <u>fuzzy quantum space</u> we understand a couple (X,M), where X is a nonempty set and MC[0,1]X such that the following conditions are satisfied:

- (i) if $[1]_X(x) = 1$ for any $x \in X$, then $[1]_X \in M$; (ii) if $a \in M$, then $a^{\perp} : = 1 a \in M$;
- (iii) if $[1/2]_X(x) = 1/2$ for any $x \in X$, then $[1/2]_X \notin M$;
 - (iv) $\bigcup_{n=1}^{\infty} a_n : = \sup_{n} a_n \in M$, for any $\{a_n\}_{n=1}^{\infty} \subset M$:

By
$$\bigcap_{n} a_{n}$$
 we mean $\inf_{n} a_{n}$.

An F-state of a fuzzy quantum space (X,M) is a mapping m: $M \longrightarrow [0,1]$ such that

- (i) m(aU(1-a)) = 1 for every $a \in M$;
- (ii) if $a_i \in M$ (i = 1, 2, ...) and $a_i \le 1 a_j$ (i $\ne j$) then $m(\bigcup_{i} a_{i}) = \sum_{i} m(a_{i}).$

In the fuzzy set theory, the mapping m is called a P-measure and M is a fuzzy soft G-algebra ([7]).

An F-observable on a fuzzy quantum space (X,M) is a mapping x: $B(R^1) \rightarrow M$ satisfying the following properties:

- (i) $x(E^c) = 1 x(E)$ for every $E \in B(R^1)$;
- (ii) if $\{E_n\}_{n=1}^{\infty} \subset B(R^1)$, then $x(\bigcup_{n=1}^{\infty} E_n) = \bigcup_{n=1}^{\infty} x(E_n)$, where $B(R^1)$

is the Borel 6-algebra of the real line R1, and Ec denotes

the complement of the set E in R¹. For an F-observable x we put $B_x(t) = x((-\infty,t))$, $t \in R^1$, and any F-observable is uniquely determined by the system $\{B_x(t): t \in R^1\}$ [4]. We define a question observable x_a of a fuzzy set as M as a mapping from $B(R^1)$ into M such that

$$\mathbf{x}_{\mathbf{a}}^{(E)} = \begin{cases} \mathbf{a} \cap \mathbf{a}^{\perp} & \text{if } 0,1 \notin E \\ \mathbf{a}^{\perp} & \text{if } 0 \in E, 1 \notin E \\ \mathbf{a} & \text{if } 0 \notin E, 1 \in E \\ \mathbf{a} \cup \mathbf{a}^{\perp} & \text{if } 0,1 \in E, \quad \text{for any } E \in \mathbb{B}(\mathbb{R}^{1}). \end{cases}$$

It is evident that x_a plays the role of the <u>indicator</u> of the fuzzy set $a \in M$. The question observable of the null fuzzy set 0 we denote by C, i.e., $C = x_0$.

set 0 we denote by 0, i.e., $C = x_0$.

If $f: R^1 \longrightarrow R^1$ is a Borel measurable function, then $f \cdot x$: $E \longrightarrow x(f^{-1}(E))$, $E \in B(R^1)$ is an F-observable of (X,M). The spectrum of an F-observable x we mean the set $G(x) = \bigcap \{C \subset R^1 : C \text{ is closed and } x(C) = x(R^1)\}$. An F-observable x is bounded if G(x) is bounded set, in this case, we define the norm of x, $\|x\|$, via $\|x\| = \sup \{|t|: t \in G(x)\}$. In [4], it has been defined the sum of any pair x and y of F-observables of (X,M) as follows:

By the \underline{sum} of any pair of two F-observables x and y we mean a unique F-observable x + y for which we have

$$B_{x+y}(t) = \bigcup_{r \in Q} (B_x(r) \cap B_y(t-r)), t \in \mathbb{R}^1,$$

where Q is the set of all rationals in R¹. The sum of two F-observables exists always ([41,[5]), and it coincides with pointwisely defined sum of observables for a 5-algebra of crisp subsets.

The difference of x and y is defined as x - y = x + (-y), where $(-y)(E) = y(\{t: -t \in E\})$, $E \in B(R^1)$.

If x is an F-observable and m is an F-state, then the mean value of x in m we shall defined as follows

$$m(x) = \int_{R^1} t dm_x(t) = \int x dm$$
, if the integral exists and

is finite, where m_x is a probability measure on $B(R^1)$ defined via $m_x(E) = m(x(E))$, $E \in B(R^1)$.

A mapping $T: M \longrightarrow M$ such that

(i) $T(a^{\perp}) = T(a)^{\perp}$, a $\in M$;

(ii) $\mathcal{C}(\bigcup_{i=1}^{\infty} a_i) = \bigcup_{i=1}^{\infty} \mathcal{C}(a_i)$, $\{a_i\}_{i=1}^{\infty} \subset \mathbb{N}$ is called a <u>homomorphism</u> of (X,M). We say that a homomorphism \mathcal{T} of (X,M) is invariant in an F-state m if $m(\mathcal{T}(a)) = m(a)$, $a \in M_{\bullet}$ A homomorphism \mathcal{T} of (X,M) invariant in an F-state m is said to be ergodic in m if the statement $m(a \cap T(a^{\perp})) = 0 = m(T(a) \cap a^{\perp})$ implies $m(a) \in \{0,1\}$. It T is a homomorphism and x is an F-observable, then T.x: $E \mapsto (x(E)), E \in B(R^1), \text{ is an } F\text{-observable of } (X,M), \text{ too.}$

Now, we recall that the sequence $\{x_n\}_{n=1}^{\infty}$ of F-observables of a fuzzy quantum space (X,M) converges to an F-observable x almost everywhere in an F-state m (in short $x_n \rightarrow x$ a.e. [m]) if for every E > 0

$$m(\bigcup_{k=1}^{\infty}\bigcap_{n=k}^{\infty}((x_n-x)([-\xi,\xi])))=1.$$

ERGODIC THEOREMS

In this part, we generalize some results of R. Mesiar [6] for fuzzy quantum space.

Let us define, according to [1], $I_0 = \{a \in M: \exists c \ge 1/2,$ $c \in M$, such that $a \cap c \le 1/2$, $I_m = \{a \in M: m(a) = 0\}$, then $I_o \subseteq I_m$ and $I_0(I_m)$ is a 6-ideal, that is

(i) if $a \in M$, $b \in I_0$, $a \le b$ then $a \in I_0$; (ii) if $\{a_i\} \subset I_0$, then $\bigcup_i a_i \in I_0$;

(iii) a∩a ∈ I for every a ∈ M;

(iv) if $a \cap c \in I_0$ for some $c \ge 1/2$, $c \in M$, then $a \in I_0$. We define relation "~" as follows: a ~b iff a nb, an $\cap b \in I_0$, $\bar{a} = \{b \in M: b \sim a\}$, $a \in M$, and $\underline{M/I_0} = \{\bar{a}: a \in M\}$ is a Boolean 6-algebra [2], if we put $\bar{a}^{\perp} = \bar{a}^{\perp}$, and $\bigvee_i \bar{a}_i = \bigcup_i a_i$.

Moreover, if m is a state, then $\mu(\bar{a})$: = m(a), a \in M, is a probability measure on M/I ...

Define a mapping $\overline{\mathbb{C}}$: $M/I_0 \to M/I_0$ as follows: $\overline{\mathbb{C}}(\overline{a}) = \overline{\mathbb{C}}a$, as M. Then due to the invariancy of \mathbb{C} in M, $\overline{\mathbb{C}}$ is a well-de-

fine homomorphism of M/I, that is,

(i) $\vec{\mathbb{C}}(\vec{0}) = \vec{0};$

(ii) $\overline{C}(\overline{a}^{\perp}) = (\overline{C}(\overline{a}))^{\perp}$, $a \in M$;

(iii)
$$\overrightarrow{T}(\bigvee_{i=1}^{\infty} \overrightarrow{a}_i) = \bigvee_{i=1}^{\infty} \overrightarrow{T}(\overrightarrow{a}_i), \{a_i\} \in M.$$

Moreover, it is invariant in n, i.e., $n(\overline{\mathbb{T}}(\bar{a})) = n(\bar{a})$, a.e., n be a sequence of F-observables of (X,M). Then $y_n : E \mapsto x_n(E)$, $E \in B(R^1)$, $n \ge 1$, is an F-observable of M/I_0 , i.e., it fulfils the same conditions as F-observables, moreover, $y_n(\beta) = \overline{0}$.

LEMMA 1. Let A be the minimal Boolean sub-5-algebra of M/I_0 containing all ranges of \overline{U}_0 x_n for n=1, 2, ..., i=1, 2, ... Then \overline{U}_0

PROOF. Denote by $A_0 = \{\vec{a} \in A : \vec{\nabla} \vec{a} \in A\}$. Then $\vec{0}, \vec{1} \in A_0$ and A is a Boolean sub-G-algebra of M/I₀ containing all ranges $\vec{\nabla} \cdot \vec{x}_1$, $n \ge 1$. Hence, $A_0 = A_0$

Q.E.D.

THEOREM 1. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of F-observables of a fuzzy quantum space (X,M). Let $\{x_n\}_{n=1}^{\infty} \longrightarrow 0$ a.e. [m], $\|x_n\| \le K$, for $n = 1, 2, \dots$ Then

$$\frac{1}{n}\sum_{i=1}^{n} \mathbf{T}_{i} \cdot \mathbf{x}_{i} \longrightarrow \mathbf{0} \quad \text{a.e. [m].}$$

PROOF. The Boolean sub-5-algebra A in Lemma 1 has a countable generator, hence, due to Varadarajan [8], there is an observable z: $B(R^1) \longrightarrow M/I_0$, such that $A = z(B(R^1))$. It is clear that \overline{L} is z-measurable, i.e., $\overline{L} \circ z(B(R^1)) \subseteq z(B(R^1))$. This is possible ([1]) iff there is a Borel measurable transformation $T: R^1 \longrightarrow R^1$ such that $\overline{L}(z(E)) = z(T^{-1}(E))$, $E \in B(R^1)$. Therefore, $\overline{L}(z(E)) = z(T^{-k}(E))$, $E \in B(R^1)$, and due to Varadarajan [8], there exists a sequence of Borel measurable functions $\{f_n\}: \overline{L}(E) = z(f_n^{-1}(E))$ for every $E \in B(R^1)$, $n \ge 1$ and $\overline{L}(E) = \overline{L}(z(E)) = \overline{L}(z(E)) = z(T^{-k}(E))$.

Moreover, $G(x_n) \ge G(\bar{x}_n) \ge G(f_n^{-1})$, then $|f_n| \le ||\bar{x}_n|| \le ||x_n|| \le K$.

It is clear, that μ_z : $E \mapsto \mu(z(E))$, $E \in B(R^1)$, is a probability measure on $B(R^1)$ and $(R^1, B(R^1), \nu_z, T)$ is a dynamic system. From a definition of the almost everywhere convergence $x \mapsto 0$ a.e. We have

$$m(\bigcup_{k=1}^{\infty} \sum_{n=k}^{\infty} ([-\epsilon, \epsilon])) = 1 \iff \sum_{k=1}^{\infty} \sum_{n=k}^{\infty} ([-\epsilon, \epsilon])) = 1,$$

$$k=1 \text{ n=k}$$

$$(U \cap \sum_{k=1}^{\infty} z(f_n^{-1}([-\xi, \xi])) = 1,$$

$$\mu_{z}(\bigcup_{k=1}^{\infty}\bigcap_{n=k}^{\infty}f_{n}^{-1}([-\xi,\xi]))=1 \text{ iff } f_{n}\longrightarrow 0 \text{ a.e. } [\mu_{z}].$$

Due to [6], we have

$$\frac{1}{n}\sum_{i=1}^{n}f_{i}\circ T^{i} \longrightarrow 0 \quad \text{a.e. } [\mu_{z}], \text{ so that}$$

$$\frac{1}{n}\sum_{i=1}^{n}q^{i}\cdot x_{i} \rightarrow 0 \text{ a.e. [m]}.$$

Q.E.D.

Let 3: and y be two F-observables of (X,M). We say that $x \le y$ if $G(y-x) \subseteq [0,\infty)$.

THEOREM 2. Let $x_n \to 0$ a.e. [m], $0 \le x_n \le y$ for n = 1, 2, 3, ... Then

$$\frac{1}{n}\sum_{i=1}^{n} \mathcal{I}_{o}^{i} x_{i} \longrightarrow \mathcal{O} \text{ a.e. [m].}$$

PROOF. We used the similar arguments as those developed in Lemma 1 and Theorem 1. Let A_1 be the minimal Boolean sub-G-algebra of M/I_0 containing all ranges of $\overline{\mathbb{C}}^k$. \overline{x}_n and $\overline{\mathbb{C}}^k$. \overline{y} , for $k \ge 1$, $n \ge 1$. Then $\overline{\mathbb{C}}A_1 \le A_1$ and A has a countable generator. In view of Varadarajan [8], there is an observable z from $B(R^1)$ onto A_1 . Moreover, there are f, f_n , $n \ge 1$, Borel measurable, real-valued functions, such that $\overline{x}_n(E) = z(f_n^{-1}(E))$, $\overline{y}(E) = z(f^{-1}(E))$, for any $E \in B(R^1)$, $n \ge 1$.

Denote $g_n = \max(0, f_n)$ and $g = \max(0, f)$, then we have $\bar{x}_n(E) = z(g_n^{-1}(E)), \ \bar{y}(E) = z(g^{-1}(E)), \ E \in B(R^1), \ n \ge 1.$

Let $h_n = \min(f_n, f)$ and h = f, then $\bar{x}_n(E) = z(h_n^{-1}(E))$, $\bar{y}(E) = z(h^{-1}(E))$.

Moreover.

 $0 \leqslant h_n \leqslant h$, and

04月114月11

Similarly as in the proof of Theorem 1, we obtain a dynamic system $(R^1, B(R^1), \mathcal{M}_Z, T)$, where $\mathcal{M}_Z(E) = \mathcal{M}(z(E)), \mathcal{M}_Z: E \longrightarrow \mathcal{M}(z(E))$ is a probability measure on $B(R^1)$ and $\overline{\mathcal{L}}(z(E)) = z(T^{-1}(E))$, $E \in B(R^1)$. This implies that

$$\frac{1}{n}\sum_{i=1}^{n} C_{\sigma}x_{i} - C_{\sigma}$$
 a.e. [m] iff

$$\frac{1}{n}\sum_{i=1}^{n}\overline{\zeta}^{i}\cdot\bar{x}_{i}\rightarrow\sigma\text{ a.e. [m] iff}$$

$$\frac{1}{n}\sum_{i=1}^{n}h_{i}\circ T^{i}\longrightarrow 0\quad \text{a.e.}\quad [\mu_{z}].$$

But the last assertion follows from the Theorem 2 of [6]. Q.E.D.

If x is an F-observable of (X,M) and f(t) = |t|, $t \in \mathbb{R}^1$, then we put $|x| = f \cdot x$.

COROLLARY 1. Let $x_n \to 0$ a.e., $|x_n| \le y$ for $n = 1, 2, \dots$ Then

$$\frac{1}{n}\sum_{i=1}^{n} (i \cdot x_i \rightarrow 0' \text{ a.e. [m]}.$$

PROOF. We denote $x_n = x_n^+ - x_n^-$, where $x_n^+ = f^+ \circ x_n^-$, $x_n^- = f^- \circ x_n^-$, $f^+(t) = \max(0,t)$ and $f^-(t) = \min(0,t)$, $|x| = x^+ + x^-$. Applying Theorem 2 to both $\{x_n^+\}$ and $\{x_n^-\}$ we get what was claimed.

Q.E.D.

REFERENCES

[1] DVUREČENSKIJ, A., RIEČAN, B.: On the individual ergodic theorem on a logic. CMUC 21, 2, 1980, 385 - 391.

- [2] DVUREČENSKIJ, A., RIEČAN, B.: On joint distribution of observables for F-quantum spaces. Fuzzy Sets and Systems.
- [3] DVUREČENSKIJ, A., TIRPÁKOVÁ, A.: Ergodic theory on fuzzy quantum spaces. Busefal, 1989, no 37.
- [4] DVUREČENSKIJ, A., TIRPÁKOVÁ, A.: Sum of observables in fuzzy quantum spaces and convergence theorems. Sent for publication.
- [5] DVUREČENSKIJ, A., TIRPÁKOVÁ, A.: A note on a sum of observables in F-quantum spaces and its properties. Busefal, No 35, 1988, 132 137.
- [6] MESIAR, R.: A generalization of the individual ergodic theorem. Math. Slovaca, 30, 1980, 327 330.
- [7] PIASECKI, K.: Probability of fuzzy events defined as denumerable additivity measure. Fuzzy Sets and Systems 17, 1985, 271 284.
- [8] VARADARAJAN, V. S.: Geometry of Quantum Theory, Van Nostrand, 1968.