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In this paper, we present a generalization of the indivie
dual ergodic theoreme, It deals with a continuation of results
of ergodic theory for fuzzy quantum spaces [3]e

Now, we introduce the notions which we shall use in the
following.

By a fuzzy guantum space we understand a couple (X,M),
where X is a nonempty set and M C[0,1]%X such that the followe
ing conditions are satisfied:

(1) 12 [1]4(x) = 1 for any x€ X, then [11;€ u;
(i1) 412 a€M, then a*: = 1 = a€ M3 -
(111) 12 [1/2]3(x) = 1/2 tor eny x€ x, then [1/2] 4 u;

> ®
(iv) nki1ans = sup a € M, for any {an} ot C Hs
By Na
n
An F-sgtate of a fuzzy quantum space (X,M) is a mapping
ms M—[0,1] such that
(1) m(aU(1 - a)) = 1 for every a€ M;
(11) if a, € M (4 = 1, 2, ..s) and a;$1 - ay (1 # §) then

(U )= ( )o
m iai Z{_:mai

n we mean igf an.

In the fuzzy set theory, the mapping m is called a P-measure
and M is a fuzzy soft Gealgebra ([7]).

An F-observable on a fuzzy quantum space (X,M) is a mappe
. 1 .
ing x: B(R')—>M satisfying the following properties:
(1) %(2%) = 1 = x(E) for every EéB(RT);

@ 1 X X 1
(1) 12 {E] CB(R'), then x(U E_ ) = U x(E_), where B(R')
n’ n=1 n n
n=1 n=1

is the Borel Gmalgebrm of the real line R1, and E® denotes



the complement of the set E in R1. For an F-observable x we
put B (t) = x((=0,t)), t€ R1, and any F-observable is uni-
quely determined by the system {B (t): te€ R1} [4])e We defi-

ne a guestion observable X, of a fuzzy set a¢ M as a mapping

from B(R') into M such that

ana* ir 0,1¢E

at it O0€E, 1¢E

8 if O¢E, 1€E :
aya® 1if 0,1€E, for any E€B(R' ).

It is evident that X plays the role of the indjcator of the
fuzzy set a € M¢ The question observable of the null fuzzy
set 0 we denote by 0, i.e., = X,e

I2 £: R\

xa(E) =

-—-aR" is.a Borel measurable function, then fex:
Eo—-vx(t"1(E)), E€ B(R') 1s an F-observable of (X,M)e The
spectrum of an F-obsemble x we mean the setG(x) =n{ccR':C
is closed and x(C) = (R )}+ An F-observable x is bounded if
6(x) isV‘bounded set, in this case, ve define the norm of x,
Ixl, vial x{ = sup{ 1t}: t€6(x)}. In [4], it has been defi-
ned the sum of any pair x and y of F-observables of (X,M) as
follows:

By the sum of any pair of iwo I-observables x and y we
mean a unique F-observable x + y for which we have

3t = U (B (x)NB (4 = o)), teRrt,
reQ

where Q is the set of all rationals in R! o
The sum of two F~observables exists always ([41,[5]), and it
coincides with pointwisely defined sum of observables for a
6~algebra of crisp subsetsa,

The difference of x and y is defined as x =y = x + (=y),
where (-y)(E) = y({t: ~t €E}), E€ B(R1 o

If x is an F=observable and m is an F-state, then the
mean value of x in m we shall defined as follows

m(x) = / t dnxx(t): =fx dm, if the integral exists and

ig finjite, where o, is a probability measure on B(R1) defie-
ned via m (E) = m(x(E)), E€B(R').
A mapping T: M—sM such that



(1) T(at) = T(a)*, aeu;
© ®
(11) {(Hiai) = g;r(ai), [aj_} 21‘CM is called a homomorphism

of (X,M)s We say that a homomorphism T of (X,M) is invariant
in an F-state m if m(@(a)) = m(a), a€Me A homomorphism T of
(X,M) invariant in an F-state m is said to be ergodic in m if
the statement m(anT(ia™)) = 0 = m(T(a)Nnat) implies m(a)E{0,1}.
It T is a homomorphism and x is an F-observable, then Tox:
Er>(x(E)), E€B(R'), is an F-observable of (X,M), too.

Now, we recall that the sequence {g} :;1 of P=observab-
les of a tuzsy quantmn space (X,M) conyerges to an F-obserw
vable x almos rywhere in an P-gtate m (in short x> X
8e0e [n]) i.f. for ¢ every £>0

m(U n (xy = =)U-5, E1))) = 1,

ERGODIC THEOREMS

In this part, we gemeralize some results of R. Mesiar [6]
for fuzzy quantum space.

Let us define, according to [1], Io ={agM: 30)1/2,
c€M, such that anc£1/2}, I = {a€M: m(a) = 0}, then IOQ I,
and I (I ) is a Gwideal, that is

(i) if aéM, b&I , a$b then a €l ;
(11) 1z {aJC1I_, then Uaiez

(1i1) ana € I, for every a €M;
(iv) 1if ancel for some ¢ ?1/2, c€M, then a€1I .

We define relation "~~" ag follows: a ~b iff anb s 8 n
NbeI_, & ={beM: basa), a €M, and WI = {8: acM} 1s a

Boolean G-algebra (21, if we put itz at ’ and Vai l{aio
i

Moreover, if m is a state, thenb'u(a'): = m(a), a €M, is
a probability measure on M/I .

‘Define a mapping T: M/I———’M/I as follows: T(Z) =q:a,
a€ M, Then due to the inva.riancy of € in m, T 1s a well~de=



fine homomorphism of M/Io, that is,
(i) f(D) s 0; ’
(11) *t(a‘-) - (ccan , aEM;

(141) TV &) = v T(a,),{ajcu,
i=1 & i=1 :

‘Moreover, it is invariant in i, i.e., ﬁ('_f'(a)) =AZ(a),
ag M, Let {xn}"’ 4 bea sequenoe of F-observables of (X,M),
Then y_: E—x (E), E€ B(R'), n3»1, is an F-observable of
u/I s 1leee, it fulfils the same conditions as Feobservables,
noroovor, yn(ﬁ) = Oe

LEMMA 1. Let A be the minimal Boolean sub=G-algebre of
I/I containing all ranges of Fﬂ‘loxn for n = 15 2, eee 9 i =
= 1, 2, eee o ThenThacCAS

PROOF, Denote by A, = {Z¢A:Ta€4). Then 0,Tca  and 4
is a Boolean sub=b=algebra of ll/I° containing all ranges
'ii.ii, n# 1. Hence, A = A,

QeEeDe

THEOREM 1. Let { zn};:'1 be a sequence of F-obs¢rvables
of a fuzzy quantum space (X,M), Let {xn} :’_1—' Ta.e. [m],
llxnll<K, forn =1, 2, ese o Then

z "l:1 x;—> —0 a.e. [m]e

PROOF, The Boolean sub-Gealgebra A in Lemma 1 has a
countable genarator, hence, due to Varadarajan [8], there is
an observable z: B(R' )—>W/I , such that A = 2(B(R] )). It is
clear that T is z-measura.ble, ic€e, Toz(B(R')) S 2(B(R"))e
This is possible ([1]) iff there is a Borel measurable trans-
formation T: R'—»R' such that T(2(8)) v 2(T~1(E)), E€B@R )
Therefore,‘fk(z(E)) = z(1T7E(=)), E € B(R! ), and due to Varadae
rajan [8], there exists a sequence of Borel measurable func-
tions {¢f } X (E) = z(f"(E)) for every E & B(R' ), n21 and
£ () = Tz £21(2)) = a(r k(e @),

Moreover,

6(x,)26(%,)26(2;"), then

2,14 UE IS Ix )l €.



It is clear, thatm : E+34(z(E)), E€B(R"), 1is a pro-
bability measure on B(R1) and (R1, B(R1),‘4uz, T) is a dyne-
mic system. From a definition of the almost everywhere con-
vergence xn—»o’ a.e. We have

® 00

v “ELD)) m 1 ==
m(kﬂ1 Qk;n(f ’ )) '< D

(O R 2 ([-6eD) = 1
ADAEAN. S

O B e -6 - 1
kel nmk 2 ?

® ® . |
‘“’z(k‘{i Qk;n ([-&E1)) = 1 122 2 —>0 a.es [, ]e

Due to [6], we have

1 i
3%1110T — 0 8eCe té“lz] ) 80 that

% nf);‘ ‘f‘. x4 —0" a.es [m]e

QeE.De

Let 3. and y be two F-observables of (X,M), We say that
x€y if &y - x) €[0,00 ),

- THEOREM 2, Let x—> ¢ a.e. [m], 0’\<xn$ y forn=1, 2,
3, ees o Then

%2;1in x;—*0" a.e. (n],

PROOF, We used the similar arguments as those develo~
ped in Lemma 1 and Theorem 1, Let A1 be the mini.mal Boolean
sub-G-algebra of /I containing all ranges of T X, and
™ ¥, for k21, n21, Then TA.‘ S.A1 and A has a countable ge=
nerator. In view of Varadarajan [81, there is an observable
z from B(R1) onto A1. Moreover, there are £, fn’ n21, Borel
measurable, real-valued functions, such that in(E) = z(f;1(E)),
F(E) = z(£~1(E)), for any E€B(R"), nZ 1.

Denote g = mx(o,fn) and g = max (0,f), then we have
£,(E) = z(g]'(8)), §(E) = z(g""(E)), E€B(R"), n21.



Let 15 = min(fn,t) and h = £, then in(E) = z(h;1(E)),
F(E) = z(h"1(E))s

Moreover,

0<:hn<'h, and

oS UX ¥ < UFL. ,

Similarly as in the proof of Theorem 1, we obtain a dy-
namic system (R', B(R'), &, T), where A (E) = A(a(E)), /4
E—M(z(E)) is a probability measure on B(R1) and T(z(E)) =
= z(*"1(E)), E€B(R"). This implies that

%t {i,xi——oj Be¢8e [ml iz
i=1

‘a
%g.“é’ii_-’U 8e¢8e f&‘"] irst

1 1

5211110@ >0 8.0 L'(,“»z .

But the last assertion follows from the Theorem 2 of [61.
QeEoDe

If x is an Feobservable of (X,M) and £(t) = |t 1, t€R1,
then we put | x! = fex.

COROLLARY 1, Let x —> 0" 8eee, IX | &y forn = 1, 2, esee
Then
n .

%ZZ Cox;—>0" aces [ml
i=1

PROOF. We denote x, = x; - x;, where x; = t% X, x; =
= £ x,, £7(t) = mex(0,t) and £7 () = - min(0,%), I x| = x* +
+ X o Applying Theorem 2 to both { x;} and {x;} we get what
was cleimed. ‘
QeEeDe
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